A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery

Energy Storage Materials - Tập 29 - Trang 216-222 - 2020
Juezhi Yu1, Manohar Salla1, Hang Zhang1, Ya Ji1, Feifei Zhang1, Mingyue Zhou1, Qing Wang1
1Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore 117576, Singapore

Tài liệu tham khảo

Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Yang, 2011, Electrochemical energy storage for green grid, Chem. Rev., 111, 3577, 10.1021/cr100290v Skyllas-Kazacos, 2011, Progress in flow battery research and development, J. Electrochem. Soc., 158, R55, 10.1149/1.3599565 Weber, 2011, Redox flow batteries: a review, J. Appl. Electrochem., 41, 1137, 10.1007/s10800-011-0348-2 Wang, 2013, Recent progress in redox flow battery research and development, Adv. Funct. Mater., 23, 970, 10.1002/adfm.201200694 Leon, 2006, Redox flow cells for energy conversion, J. Power Sources, 160, 716, 10.1016/j.jpowsour.2006.02.095 Ding, 2013, J vanadium flow battery for energy storage: prospects and challenges, Phys. Chem. Lett., 4, 1281, 10.1021/jz4001032 Kear, 2012, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res., 36, 1105, 10.1002/er.1863 Li, 2011, A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Adv. Energy Mater., 1, 394, 10.1002/aenm.201100008 Li, 2011, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci., 4, 1147, 10.1039/c0ee00770f Parasuraman, 2013, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta, 101, 27, 10.1016/j.electacta.2012.09.067 Huskinson, 2014, A metal-free organic–inorganic aqueous flow battery, Nature, 505, 195, 10.1038/nature12909 Lin, 2016, A redox-flow battery with an alloxazine-based organic electrolyte, Nat. Energy, 1, 16102, 10.1038/nenergy.2016.102 Orita, 2016, A biomimetic redox flow battery based on flavin mononucleotide, Nat. Commun., 7, 13230, 10.1038/ncomms13230 Hu, 2017, Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage, J. Am. Chem. Soc., 139, 1207, 10.1021/jacs.6b10984 Hollas, 2018, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries, Nat. Energy, 3, 508, 10.1038/s41560-018-0167-3 Wei, 2016, Aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes, J. Electrochem. Soc., 163, A5150, 10.1149/2.0221601jes Beh, 2017, A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention, ACS Energy Lett, 2, 639, 10.1021/acsenergylett.7b00019 Winsberg, 2017, Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery, ACS Energy Lett, 2, 411, 10.1021/acsenergylett.6b00655 Zhang, 2019, Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries, Adv. Mater., 31, 1901052, 10.1002/adma.201901052 Luo, 2017, Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries, Nanomater. Energy, 42, 215, 10.1016/j.nanoen.2017.10.057 Luo, 2019, Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries, Joule, 3, 149, 10.1016/j.joule.2018.10.010 Park, 2019, A high voltage aqueous zinc–organic hybrid flow battery, Adv. Energy Mater., 9, 1900694, 10.1002/aenm.201900694 Geiger, 2007, Organometallic Electrochemistry: origins, development, and future, Organometallics, 26, 5738, 10.1021/om700558k Noviandri, 1999, The decamethylferrocenium/decamethylferrocene redox Couple: A superior redox standard to the ferrocenium/ferrocene redox couple for studying solvent effects on the thermodynamics of electron transfer, J. Phy. Chem., B, 103, 6713, 10.1021/jp991381+ Rogers, 2008, Voltammetric characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene redox couples in RTILs, J. Phys. Chem. C, 112, 2729, 10.1021/jp710134e Ji, 2017, Highly selective sulfonated poly (ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries, J. Membr. Sci., 539, 197, 10.1016/j.memsci.2017.06.015 Huang, 2016, A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide, Energy Environ. Sci., 9, 917, 10.1039/C5EE03764F Pan, 2014, Redox targeting of anatase TiO2 for redox flow lithium-ion batteries, Adv. Energy Mater., 4, 1400567, 10.1002/aenm.201400567 Yan, 2018, Redox-targeting-based flow batteries for large-scale energy storage, Adv. Mater., 30, 1802406, 10.1002/adma.201802406 Yu, 2018, Redox targeting-based aqueous redox flow lithium battery, ACS Energy Lett, 3, 2314, 10.1021/acsenergylett.8b01420 Zhou, 2017, Nernstian potential-driven redox targeting reactions of battery materials, Inside Chem., 3, 1036 Chen, 2019, A stable and high capacity redox targeting-based electrolyte for aqueous flow batteries, Joule, 3, 2255, 10.1016/j.joule.2019.06.007 Xie, 2019, Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage, Energy Environ. Sci., 12, 1834, 10.1039/C8EE02825G Weng, 2017, Unlocking the capacity of iodide for high- energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries, Energy Environ. Sci., 10, 735, 10.1039/C6EE03554J Janoschka, 2016, An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system, Angew. Chem. Int. Ed., 55, 14427, 10.1002/anie.201606472