Optimization of a butterfly valve disc using 3D topology and genetic algorithms

Structural and Multidisciplinary Optimization - Tập 56 - Trang 941-957 - 2017
S. Corbera Caraballo1, J. L. Olazagoitia Rodríguez2, J. A. Lozano Ruiz3, R. Álvarez Fernández2
1Cátedra Nebrija Santander Green Surface Transport, Universidad Nebrija, Madrid, Spain
2Escuela Politécnica Superior y de Arquitectura, Universidad Nebrija, Madrid, Spain
3Departamento de Ingeniería Mecánica, Química y Diseño Industrial, ETS de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Madrid, Spain

Tóm tắt

Butterfly valves are a mechanical component used to regulate flow and pressure on a variety of tanks and pipeline systems. The design of this flow-control device needs to consider its structural performance as well as the flow of the fluid. In this sense, simulation and optimization tools play an important role in a butterfly valve successful development. This paper presents a global optimization of the disc of a butterfly valve by the combination of topology and shape optimization techniques. Topology optimization is employed during concept design stage to evaluate the best material distribution from a structural performance point of view. Then, based on the topology optimization results, a shape optimization, managed by Genetic Algorithms (GAs), is conducted considering structural and fluid dynamics at the same time. The results demonstrate the suitability of the proposed approach to obtain a light butterfly valve disc which satisfies the structural safety and the flow requirements.

Tài liệu tham khảo

Baker RC (2005) Flow measurement handbook: industrial designs, operating principles, performance, and applications. Cambridge University Press, Cambridge Baverey, F. (1916). U.S. Patent No. 1,167,145. Washington. Patent and trademark office BVack T (1993) Optimal mutation rates in genetic search. In Proc. of the 5th International Conference on Genetic Algorithms 2–8 Caille V, Laumonier J (1998) Effect of periodic aerodynamic pulsation on flow over a confined butterfly valve. Exp Fluids 25(4):362–368 Corbera S, Olazagoitia JL, Lozano JA (2016) Multi-objective global optimization of a butterfly valve using genetic algorithms. ISA Trans. doi:10.1016/j.isatra.2016.03.008 De Jong K (1980) Adaptive system design: a genetic approach. IEEE Trans Syst Man Cybernet 10(9):566–574 Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38 Deb K (2001) Multi-objective optimization using evolutionary algorithms (Vol. 16). Wiley Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197 Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning, mass: Wesley Han SU, Ahn DG, Lee MG, Lee KH, Han SH (2014) Structural safety analysis based on seismic service conditions for butterfly valves in a nuclear power plant. Sci World J. doi:10.1155/2014/743470 Huang C, Kim RH (1996) Three-dimensional analysis of partially open butterfly valve flows. J Fluids Eng 118(3):562–568 Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683 Kim JO, Yang SM, Baek SH, Kang S (2012) Structural design strategy of double-eccentric butterfly valve using topology optimization techniques. World Acad Sci, Eng Technol, Int J Mech, Aeros, Ind, Mech Manuf Eng 6(6):1075–1080 Kimura T, Tanaka T, Fujimoto K, Ogawa K (1995) Hydrodynamic characteristics of a butterfly valve—prediction of pressure loss characteristics. ISA Trans 34(4):319–326 Morris MJ, Dutton JC (1991) An experimental investigation of butterfly valve performance downstream of an elbow. J Fluids Eng 113(1):81–85 Nagpurkar PP, Tajane RS (2014) Design and development of double offset butterfly valve. In International Journal of Engineering Research and Technology (Vol. 3, no. 7 (July-2014)). ESRSA publications Odu GO, Charles-Owaba OE (2013) Review of multi-criteria optimization methods–theory and applications. IOSRJEN 3:1–14 Ogawa K, Kimura T (1995) Hydrodynamic characteristics of a butterfly valve—prediction of torque characteristics. ISA Trans 34(4):327–333 Prager W, Rozvany GI (1977) Optimization of structural geometry. Dynam Syst, 265–293 Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048 Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127 Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055 Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377 Sorkine O (2006). Laplacian mesh processing Spears WM (1991) KA De Jong. On the virtues of parameterized uniform crossover. Proceedings of the fourth International Conference on Genetic Algorithms Ştefan MT, Iosif PZ, Florin P, Marius AE, Dorica SM (2011) Stresses and displacement FEM analysis on biplane disks of the butterfly valves. In Proceedings of the 4th WSEAS international conference on Finite differences-finite elements-finite volumes-boundary elements (pp. 88–91). World scientific and engineering academy and society (WSEAS) Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896 Xie, Y. M., & Steven, G. P. (1997). Basic evolutionary structural optimization. In Evolutionary Structural Optimization (pp. 12–29). Springer London Yang SM, Baek SH, Kang S (2012) Shape design for disc of a double-eccentric butterfly valve using the topology optimization technique. J Comput Fluids Eng 17(1):61–69 Yi SI, Shin MK, Shin MS, Yoon JY, Park GJ (2008) Optimization of the eccentric check butterfly valve considering the flow characteristics and structural safety. Proc Inst Mech Eng, Part E: J Proc Mech Eng 222(1):63–73 Young V, Querin OM, Steven GP, Xie YM (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Opt 18(2–3):183–192 Zeheen, J. (1887). U.S. Patent No. 373,000. Washington. Patent and trademark office Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21(1):80–83 Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 1–28