Mercury pollution in the coastal Urmia aquifer in northwestern Iran: potential sources, mobility, and toxicity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amiri V, Berndtsson R (2020) Fluoride occurrence and human health risk from groundwater use at the west coast of Urmia Lake, Iran. Arab J Geosci. https://doi.org/10.1007/s12517-020-05905-7
Amiri V, Rezaei M, Sohrabi N (2014) Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ Earth Sci 72(9):3479–3490. https://doi.org/10.1007/s12665-014-3255-0
Amiri V, Sohrabi N, Altafi Dadgar M (2015) Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, Central Iran. Environ Earth Sci 74(7):6163–6176. https://doi.org/10.1007/s12665-015-4638-6
Amiri V, Nakhaei M, Lak R, Kholghi M (2016a) Assessment of seasonal groundwater quality and potential saltwater intrusion: a study case in Urmia coastal aquifer (NW Iran) using the groundwater quality index (GQI) and hydrochemical facies evolution diagram (HFE-D). Stoch Environ Res Risk Assess 30:1473–1484. https://doi.org/10.1007/s00477-015-1108-3
Amiri V, Nakhaei M, Lak R, Kholghi M (2016b) Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environ Sci Pollut Res 23:16738–16760. https://doi.org/10.1007/s11356-016-6859-y
Amiri V, Nakhaei M, Lak R, Kholghi M (2016c) Investigating the salinization and freshening processes of coastal groundwater resources in Urmia aquifer, NW Iran. Environ Monit Assess 188:233. https://doi.org/10.1007/s10661-016-5231-5
Amiri V, Nakhaei M, Lak R (2017) Using radon-222 and radium-226 isotopes to deduce the functioning of a coastal aquifer adjacent to a hypersaline lake in NW Iran. J Asian Earth Sci 147:128–147. https://doi.org/10.1016/j.jseaes.2017.07.015
Amiri V, Kamrani S, Ahmad A, Bhattacharya P, Mansoori J (2020) Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd province, central plateau of Iran. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10362-6
APHA (1996) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington DC
Austin D, Scharf R, Carroll J, Enochs M (2016) Suppression of hypolimnetic methylmercury accumulation by liquid calcium nitrate amendment: redox dynamics and fate of nitrate. Lake Reserv Manage 32(1):61–73. https://doi.org/10.1080/10402381.2015.1121306
Baas-Becking LGM, Kaplan IR, Moore D (1960) Limits of natural environment in terms of pH and oxidation-reduction potentials. J Geol 68:243–284. https://doi.org/10.1086/626659
Bagnato E, Aiuppa A, Parello F, D'Alessandro W, Allard P, Calabrese S (2009) Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles). J Volcanol Geotherm Res 179:96–106. https://doi.org/10.1016/j.jvolgeores.2008.10.005
Balcom PH, Fitzgerald WF, Vandal GM, Lamborg CH, Rolfhus KR, Langer CS, Hammerschmidt CR (2004) Mercury sources and cycling in the Connecticut River and Long Island Sound. Mar Chem 90(1–4):53–74. https://doi.org/10.1016/j.marchem.2004.02.020
Balcom PH, Hammerschmidt CR, Fitzgerald WF, Lamborg CH, O'Connor JS (2008) Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor estuary. Mar Chem 109(1–2):1–17. https://doi.org/10.1016/j.marchem.2007.09.005
Barker HA (1936) Studies upon the methane producing bacteria. Arch Microbiol 7:404–420. https://doi.org/10.1007/BF00407414
Barringer JL, Szabo Z (2006) Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain. Water Air Soil Poll 175:193–221. https://doi.org/10.1007/s11270-006-9130-1
Barringer JL, MacLeod CL, Gallagher RA (1997) Mercury in ground water, soils, and sediments of the Kirkwood-Cohansey aquifer system in the New Jersey coastal plain. U.S. Geological Survey. Open-File Report 95–475
Barringer JL, Szabo Z, Kauffman LJ, Barringer TH, Stackelberg PE, Ivahnenko T, Rajagopalan S, Krabbenhoft DP (2005) Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. Sci Total Environ 346(1–3):169–183. https://doi.org/10.1016/j.scitotenv.2004.11.013
Barringer JL, Szabo Z, Reilly P (2012) Mercury in waters, soils, and sediments of the New Jersey coastal plain: a comparison of regional distribution and mobility with the mercury contamination at the William J. Hugues technical center, Atlantic County, New Jersey; scientific investigations report 2012-5115; USGS: Reston, VA, USA
Barrow NJ, Cox VC (1992) The effects of pH and chloride concentration on mercury sorption. I By goethite J Soil Sci 43:295–304. https://doi.org/10.1111/j.1365-2389.1992.tb00138.x
Bern CR, Walton-Day K, Naftz DL (2019) Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ Pollut 248:90–100. https://doi.org/10.1016/j.envpol.2019.01.122
Beutel MW, Duvil R, Cubas FJ, Grizzard TJ (2017) Effects of nitrate addition on water column methylmercury in Occoquan Reservoir, Virginia, USA. Water Res 110:288–296. https://doi.org/10.1016/j.watres.2016.12.022
Billen G, Jojris C, Wollast R (1974) A bacterial methylmercury-mineralizing activity in river bed sediments. Water Res 8:219–225. https://doi.org/10.1016/0043-1354(74)90158-4
Bollen A, Wenke A, Biester H (2008) Mercury speciation analyses in HgCl2-contaminated soils and groundwater: implications for risk assessment and remediation strategies. Water Res 42:91–100. https://doi.org/10.1016/j.watres.2007.07.011
Bone SE, Bargar JR, Sposito G (2014) Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. Environ Sci Technol 48(18):10681–10689. https://doi.org/10.1021/es501514r
Brigatti MF, Colonna S, Malferrari D, Medici L, Poppi L (2005) Mercury adsorption by montmorillonite and vermiculite: a combined XRD, TG-MS, and EXAFS study. Appl Clay Sci 28:1–8. https://doi.org/10.1016/j.clay.2004.03.006
Chen J, Huang Q, Lin Y, Fang Y, Qian H, Liu R, Ma H (2019) Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water 11:96. https://doi.org/10.3390/w11010096
Chiasson-Gould SA, Blais JM, Poulain AJ (2014) Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environ Sci Technol 48:3153–3161. https://doi.org/10.1021/es4038484
Davison W (1993) Iron and manganese in lakes. Earth-Sci Rev 34:119–163. https://doi.org/10.1016/0012-8252(93)90029-7
Duvil R, Beutel MW, Fuhrmann B, Seelos M (2018) Effect of oxygen, nitrate and aluminum addition on methylmercury efflux from mine-impacted reservoir sediment. Water Res 144(1):740–751. https://doi.org/10.1016/j.watres.2018.07.071
EN, European Committee for Standardization (2007) Method 1483, water quality-determination of mercury-method using atomic absorption spectrometry
Esen E, Kucuksezgin F, Uluturhan E (2010) Assessment of trace metal pollution in surface sediments of Nemrut Bay, Aegean Sea. Environ Monit Assess 160:257–266. https://doi.org/10.1007/s10661-008-0692-9
Esmaeili-Vardanjani M, Rasa I, Amiri V, Yazdi M, Pazand K (2015) Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ Monit Assess 187(2):53. https://doi.org/10.1007/s10661-014-4261-0
Forbes EA, Posner AM, Quirk JP (1974) The specific adsorption of inorganic Hg(II) species and Co(II)complex ions on goethite. J Colloid Interface Sci 49:403–409. https://doi.org/10.1016/0021-9797(74)90385-3
Gardner M, Gunn A (1997) Stability of mercury in seawater samples. Anal Commun 34:245–246. https://doi.org/10.1039/A705121B
Grassi S, Netti R (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany-Italy). J Hydrol 237:198–211. https://doi.org/10.1016/S0022-1694(00)00307-3
Graydon JA, Emmerton CA, Lesack LFW, Kelly EN (2009) Mercury in the Mackenzie River delta and estuary: concentrations and fluxes during open-water conditions. Sci Total Environ 407(8):2980–2988. https://doi.org/10.1016/j.scitotenv.2008.12.060
Guo X, Zuo R, Meng L, Wang J, Teng Y, Liu X, Chen M (2018) Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. Int J Environ Res Public Health 15(2):279. https://doi.org/10.3390/ijerph15020279
Ha J, Zhao X, Yu R, Barkay T, Yee N (2017) Hg(II) reduction by siderite (FeCO3). Appl Geochem 78:211–218. https://doi.org/10.1016/j.apgeochem.2016.12.017
Han S, Obraztsova A, Pretto P, Choe K-Y, Gieskes J, Deheyn DD, Tebo BM (2007) Biogeochemical factors affecting mercury methylation in sediments of the Venice lagoon, Italy. Environ Toxicol Chem 26:655–663. https://doi.org/10.1897/06-392R.1
Hanke ME, Bailey JH (1945) Oxidation-reduction potential requirements of Cl. welchii and other clostridia. Proc Soc Exp Biol Med 59(2):163–166. https://doi.org/10.3181/00379727-59-15017
Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012) Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resour Manag 26:129–145. https://doi.org/10.1007/s11269-011-9909-8
He S, Li P (2019) A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Geochemistry.:125550. https://doi.org/10.1016/j.chemer.2019.125550
He X, Li P (2020) Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health 12(3):385–401. https://doi.org/10.1007/s12403-020-00344-x
He S, Wu J (2019) Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, Northwest China. Expo Health 11(2):125–137. https://doi.org/10.1007/s12403-018-0289-7
He X, Wu J, He S (2019) Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, Northwest China. Hum Ecol Risk Assess 25(1–2):32–51. https://doi.org/10.1080/10807039.2018.1531693
Hellal J, Guédron S, Huguet L, Schäfer J, Laperche V, Joulian C, Lanceleur L, Burnol A, Ghestem JP, Garrido F, Battaglia-Brunet F (2015) Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: a column study to mimic reactive transfer in an anoxic aquifer. J Contam Hydrol 180:56–68. https://doi.org/10.1016/j.jconhyd.2015.08.001
Hovsepyan A (2008) Immobilization of mercury in contaminated soils using aluminum drinking water treatment residuals. PhD Thesis, University of Florida
James CH (1962) A review of the geochemistry of mercury (excluding analytical aspects) and its application to geochemical prospecting; London, Imp. Coll. Sci. and Technology, Tech. Common. 41:42
Jamshidi S, Bastami KD (2016) Metal contamination and its ecological risk assessment in the surface sediments of Anzali wetland, Caspian Sea. Mar Pollut Bull 113(1–2):559–565. https://doi.org/10.1016/j.marpolbul.2016.08.049
Javadian M, Behrangi A, Gholozadeh M, Tajrishy M (2019) METRIC and WaPOR estimates of evapotranspiration over the Lake Urmia Basin: comparative analysis and composite assessment. Water 11(8):1647. https://doi.org/10.3390/w11081647
Jensen DL, Boddum JK, Tjell JC, Christensen TH (2002) The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Appl Geochem 17(4):503–511. https://doi.org/10.1016/S0883-2927(01)00118-4
Jeong HY, Klaue B, Blum JD, Hayes KF (2007) Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environ Sci Technol 41:7699–7705. https://doi.org/10.1021/es070289l
Khan MN, Mobin M, Abbas ZK, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. In: Dominick a, Della S, Michael I. Goldstein (eds.). The encyclopedia of the Anthropocene, 5:225–240. Oxford: Elsevier
Kim CS, Rytuba JJ, Brown GE Jr (2004) EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides: I. effects of pH. J Colloid Interface Sci 271(1):1–15. https://doi.org/10.1016/s0021-9797(03)00330-8
Kinniburgh DG, Jackson ML (1978) Adsorption of mercury(II) by iron hydrous oxide gel. Soil Sci Soc Am J 42:45–47. https://doi.org/10.2136/sssaj1978.03615995004200010010x
Kohzadi S, Shahmoradi B, Raushani D, Nouri A (2018) Evaluation and risk assessment of heavy metals in the groundwater resources of Saqqez, Iran. J Environ Health 80(6):1–9
Landner L (1971) Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature 230:452–454. https://doi.org/10.1038/230452a0
Ledesma-Ruiz R, Pastén-Zapata E, Parra R, Harter T, Mahlknecht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423. https://doi.org/10.1016/j.jhydrol.2014.12.026
Li Y, Yin Y, Liu G, Tachiev G, Roelant D, Jiang G, Cai Y (2012) Estimation of the major source and sink of methylmercury in the Florida Everglades. Environ Sci Technol 46(11):5885–5893. https://doi.org/10.1021/es204410x
Li P, Qian H, Howard KWF, Wu J, Lyu X (2014) Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, Northwest China. Environ Monit Assess 186(3):1385–1398. https://doi.org/10.1007/s10661-013-3461-3
Li P, Qian H, Howard KWF, Wu J (2015) Heavy metal contamination of Yellow River alluvial sediments, Northwest China. Environ Earth Sci 73(7):3403–3415. https://doi.org/10.1007/s12665-014-3628-4
Li P, Wu J, Qian H, Zhou W (2016) Distribution, enrichment and sources of trace metals in the topsoil in the vicinity of a steel wire plant along the Silk Road economic belt, Northwest China. Environ Earth Sci 75(10):909. https://doi.org/10.1007/s12665-016-5719-x
Li P, Wu J, Tian R, He S, He X, Xue C, Zhang K (2018) Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ 37(2):222–237. https://doi.org/10.1007/s10230-017-0507-8
Li P, Tian R, Liu R (2019) Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo Health 11(2):81–94. https://doi.org/10.1007/s12403-018-0277-y
Liang P, Wu S, Zhang C, Xu J, Christie P, Zhang J, Cao Y (2018) The role of antibiotics in mercury methylation in marine sediments. J Hazard Mater 360:1–5. https://doi.org/10.1016/j.jhazmat.2018.07.096
Lindberg SE, Southworth G, Prestbo EM, Wallschlager D, Bogle MA, Price J (2005) Gaseous methyl- and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California. Atmos Environ 39:249–258. https://doi.org/10.1016/j.atmosenv.2004.09.060
Liu J, Valsaraj KT, Devai I, DeLaune RD (2008) Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157:432–440. https://doi.org/10.1016/j.jhazmat.2008.01.006
Liu M, Chen L, Wang X, Zhang W, Tong Y, Ou L, Xie H, Shen H, Ye X, Deng C (2016) Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance. Environ Sci Technol 50(12):6224–6232. https://doi.org/10.1021/acs.est.5b04999
Luo Y, Duan L, Xu G, Hao J (2015) Inhibition of mercury release from forest soil by high atmospheric deposition of Ca2+ and SO42−. Chemosphere 134:113–119. https://doi.org/10.1016/j.chemosphere.2015.03.081
Macleod M, Mckone TE, Mackay D (2005) Mass balance for mercury in the San Francisco bay area. Environ Sci Technol 39(17):6721–6729. https://doi.org/10.1021/es050112w
Maleki A, Amini H, Nazmara S, Zandi S, Mahvi AH (2014) Spatial distribution of heavy metals in soil, water, and vegetables of farms in Sanandaj, Kurdistan, Iran. J Environ Health Sci Eng 12(1):136. https://doi.org/10.1186/s40201-014-0136-0
Miao Z, Brusseau ML, Carroll KC, Carreón-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34(4):539–550. https://doi.org/10.1007/s10653-011-9423-1
Moussa B, Djamel R, Faouzi BM (2015) Hydro geochemistry and balance between minerals and solutions in the mercurial zone of Azzaba, Northeast of Algeria. Energy Procedia 74:1133–1141. https://doi.org/10.1016/j.egypro.2015.07.754
Mukherjee AB, Zevenhoven R, Bhattacharya P, Sajwan KS, Kikuchi R (2008) Mercury flow via coal and coal utilization by-products: a global perspective. Resour Conserv Recy 52:571–591. https://doi.org/10.1016/j.resconrec.2007.09.002
Muresan B, Pernet-Coudrier B, Cossa D, Varrault G (2011) Measurement and modeling of mercury complexation by dissolved organic matter isolates from freshwater and effluents of a major wastewater treatment plant. Appl Geochem 26:2057–2063. https://doi.org/10.1016/j.apgeochem.2011.07.003
Nakhaei M, Amiri V, Rezaei K, Moosaei F (2015) An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran. Bull Eng Geol Environ 74(1):233–246. https://doi.org/10.1007/s10064-014-0577-9
Nakhaei M, Altafi Dadgar M, Amiri V (2016) Geochemical processes analysis and evaluation of groundwater quality in Hamadan Province, Western Iran. Arab J Geosci 9:384. https://doi.org/10.1007/s12517-016-2409-7
Navarro A, Font X, Viladevall M (2016) Groundwater contamination by uranium and mercury at the Ridaura Aquifer (Girona, NE Spain). Toxics 4:16. https://doi.org/10.3390/toxics4030016
Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411. https://doi.org/10.1038/279409a0
O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ Int 126:747–761. https://doi.org/10.1016/j.envint.2019.03.019
Park Y, Kim Y, Park SK, Shin WJ, Lee KS (2018) Water quality impacts of irrigation return flow on stream and groundwater in an intensive agricultural watershed. Sci Total Environ 630:859–868. https://doi.org/10.1016/j.scitotenv.2018.02.113
Parkhurst DL (1995) User’s guide to PHEEQC-a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 143:95–4227
Piper AM (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–923. https://doi.org/10.1029/TR025i006p00914
Piroozfar P, Lak R, Askari N, Khodaeian Z, Feyzi A, Didary H, Eeynali A, Sartipi A (2015) Geochemical and hydrogeochemical study of water resources in the western side of Urmia Lake. Geological Survey of Iran. Open-File Report (In Persian)
Pirsaheb M, Khosravi T, Sharafi K, Babajani L, Rezaei M (2013) Measurement of heavy metals concentration in drinking water from source to consumption site in Kermanshah - Iran. World Appl Sci J 21(3):416–423. https://doi.org/10.5829/idosi.wasj.2013.21.3.2782
Rajaei Q, Jahantogh H, Mir A, Hesari Motlagh S, Hassanpour M (2012) Evaluation of concentration of heavy metals in Chahnimeh Water Reservoirs of Sistan-va-Baloochestan Province in 2010. J Mazand Univ Med Sci 22(90):105–112 (in Persian)
Rajgopal T, Ravimohan H, Mascarenhas P (2006) Epidemiological surveillance of employees in a mercury thermometer plant: an occupational health study. Int J Occup Environ Med 10:11. https://doi.org/10.4103/0019-5278.22889
Reddy MM, Aiken GR (2001) Fulvic acid-sulfide ion competition for mercury ion binding in the Florida Everglades. Water Air Soil Poll 132:89–104. https://doi.org/10.1023/A:1012073503678
Richard J-H (2016) Mercury contaminated groundwater: speciation analysis, modeling, and remediation. Ph.D thesis
Richard J-H, Bischoff C, Ahrens CGM, Biester H (2016) Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater. Sci Total Environ 539:36–44. https://doi.org/10.1016/j.scitotenv.2015.08.116
Rodenhouse NL, Lowe WH, Gebauer RLE, McFarland KP, Bank MS (2019) Mercury bioaccumulation in temperate forest food webs associated with head-water streams. Sci Total Environ 665:1125–1134. https://doi.org/10.1016/j.scitotenv.2019.02.151
Sakata M, Marumoto K, Narukawa M, Asakura K (2006) Mass balance and sources of mercury in Tokyo Bay. J Oceanogr 62(6):767–775. https://doi.org/10.1007/s10872-006-0096-9
Schöndorf T, Egli M, Biester H, Mailahn W, Rotard W (1999) Distribution, bioavailability and speciation of mercury in contaminated soil and groundwater of a former Wood impregnation plant, in: Ebinghaus DR, Turner DRR, Lacerda PDLD, de Vasiliev PDO, Salomons PDW (Eds.), Mercury contaminated sites, Environmental Science. Springer Berlin Heidelberg, pp. 181–206
Schroeder RA, Rivera M (1993) Physical, chemical and biological data for detailed study of irrigation drainage in the Salton Sea area, California, CA: US Geological Survey
Schulz S, Darehshouri S, Hassanzadeh E, Tajrishy M, Schüth C (2020) Climate change or irrigated agriculture - what drives the water level decline of Lake Urmia. Sci Rep 10:236. https://doi.org/10.1038/s41598-019-57150-y
Singh RP, Agrawal M (2007) Effect of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plant. Chemosphere 67:2229–2240. https://doi.org/10.1016/j.chemosphere.2006.12.019
Sohrabi N, Chitsazan M, Amiri V, Moradi Nezhad T (2013) Evaluation of groundwater resources in alluvial aquifer based on MODFLOW program, case study: Evan plain (Iran). Int J Agri Crop Sci 5(11):1164–1170
Sohrabi N, Kalantari N, Amiri V, Nakhaei M (2017) Assessing the chemical behavior and spatial distribution of yttrium and rare earth elements (YREEs) in a coastal aquifer adjacent to the Urmia Hypersaline Lake, NW Iran. Environ Sci Pollut Res 24(25):20502–20520. https://doi.org/10.1007/s11356-017-9644-7
Sohrabi N, Kalantari N, Amiri V (2018) An evaluation of the distribution and behavior of uranium in Urmia aquifer. Iran- Water Resour Res 14(3):236–252 (In Persian)
Sohrabi N, Kalantari N, Amiri V, Saha N, Berndtsson R, Bhattacharya P, Ahmad A (2020) A probabilistic-deterministic analysis of human health risk related to the exposure to potentially toxic elements in groundwater of Urmia coastal aquifer (NW of Iran) with a special focus on arsenic speciation and temporal variation. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-020-01934-6
Spangler WJ, Spigarelli JL, Rose JM, Miller HM (1973) Methylmercury: bacterial degradation in lake sediments. Science N.Y 180:192–193. https://doi.org/10.1126/science.180.4082.192
Succop PA, Clark S, Chen M, Galke W (2004) Imputation of data values that are less than a detection limit. J Occup Environ Hyg 1(7):436–441. https://doi.org/10.1080/15459620490462797
Sunderland EM, Mason RP (2007) Human impacts on open ocean mercury concentrations. Global Biogeochem Cy 21(4):177–180. https://doi.org/10.1029/2006GB002876
Sunderland EM, Dalziel J, Heyes A, Branfireun BA, Krabbenhoft DP, Gobas FAPC (2010) Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ Sci Technol 44(5):1698–1704. https://doi.org/10.1021/es9032524
Taheri M, Emadzadeh M, Gholizadeh M, Tajrishi M, Ahmadi M, Moradi M (2019) Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin. Agric Water Manag 213:782–791. https://doi.org/10.1016/j.agwat.2018.11.013
Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C (2010) Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158:2465–2471. https://doi.org/10.1016/j.envpol.2010.03.027
ULRP (2015) Urmia Lake restoration program website. Date Accessed: May. 2016. http://ulrp.sharif.ir/en
USEPA (1996) U.S. Environmental Protection Agency Method 1669. Sampling ambient water for trace metals at EPA water quality criteria levels. U.S. Environmental Protection Agency, Washington, D.C.
USEPA (1997) Mercury study report to congress. EPA-452/R-97-004
USEPA (2002) Office of Science and Technology, Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry
USEPA (2003) National estuary program. Coastlines, Issue 13.5
USEPA (2007) Treatment Technologies for Mercury in soil, waste and water (no. EPA-542-R-07-003) US EPA
USGS (2013) Volatile organic compounds in the Nation's ground water and drinking-water supply Wells: supporting information: glossary
Vatandoost M, Naghipour D, Omidi S, Ashrafi SD (2018) Survey and mapping of heavy metals in groundwater resources around the region of the Anzali international wetland; a dataset. Data Brief 18:463–469. https://doi.org/10.1016/j.dib.2018.03.058
Vengosh A, Keren R (1996) Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. J Contam Hydrol 23:347–360. https://doi.org/10.1016/0169-7722(96)00019-8
Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35(6):1877–1894. https://doi.org/10.1029/1999WR900024
Vengosh A, Gill J, Davisson ML, Hudson GB (2002) A multi-isotope (B, Sr, O, H, and C) and age dating (3H - 3He and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Water Resour Res 38(1):9-1–9-17. https://doi.org/10.1029/2001WR000517
Walvoord MA, Andraski BJ, Krabbenhoft DP, Striegl RG (2008) Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region. Appl Geochem 23(3):572–583. https://doi.org/10.1016/j.apgeochem.2007.12.014
Wang J, Liu Q, Chen J, Chen H, Lin H, Sun X (2018) Total mercury flux and offshore transport via submarine groundwater discharge and coal-fired power plant in the Jiulong River estuary, China. Mar Pollut Bull 127:794–803. https://doi.org/10.1016/j.marpolbul.2017.09.064
WHO (World Health Organization) (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva, Licence: CC BY-NC-SA 3.0 IGO
Wiatrowski HA, Das S, Kukkadapu R, Ilton ES, Barkay T, Yee N (2009) Reduction of hg(II) to hg(0) by magnetite. Environ Sci Technol 43:5307–5313. https://doi.org/10.1021/es9003608
Wollast R, Billen G, Mackenzie FT (1975) Behaviour of mercury in natural systems and its global cycle. Pages 145–166, ecological toxicology research: effects of heavy metal and Organohalogen compounds. Proceedings of a NATO science committee conference, edited by a.D. McIntyre and C.F. Mills. New York London: plenum press
Wood JM, Kennedy FS, Rosen CG (1968) Synthesis of methylmercury compounds by extracts of a methanogenic bacterium. Nature 220:173–174. https://doi.org/10.1038/220173a0
Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982. https://doi.org/10.1007/s12517-013-1057-4
Wu J, Li P, Qian H (2015) Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci 73(12):8575–8588. https://doi.org/10.1007/s12665-015-4018-2
Wu J, Li P, Wang D, Ren X, Wei M (2020) Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese loess plateau. Hum Ecol Risk Assess 26(6):1603–1621. https://doi.org/10.1080/10807039.2019.1594156
Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121. https://doi.org/10.1016/j.envint.2006.06.022
Zhang Y, Li F, Zhang Q, Li J, Liu Q (2014) Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci Total Environ 490:213–222. https://doi.org/10.1016/j.scitotenv.2014.05.004
Zhou J, Du B, Shang L, Wang Z, Cui H, Fan X, Zhou J (2020) Mercury fluxes, budgets, and pools in forest ecosystems of China: a review. Crit Rev Env Sci Tec 50(14):1411–1450. https://doi.org/10.1080/10643389.2019.1661176