Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants
Tài liệu tham khảo
Frausto da Silva, 2001
Halliwell, 1990, Role of free radicals and catalytic metal ions in human disease—an overview, Methods Enzymol., 186, 1, 10.1016/0076-6879(90)86093-B
Nelson, 1999, Metal ion transporters and homeostasis, EMBO J., 18, 4361, 10.1093/emboj/18.16.4361
Clemens, 2001, Molecular mechanisms of plant metal homeostasis and tolerance, Planta, 212, 475, 10.1007/s004250000458
Hall, 2003, Transition metal transporters in plants, J. Exp. Bot., 54, 2601, 10.1093/jxb/erg303
Krämer, 2005, Functions and homeostasis of zinc, copper and nickel in plants, 215, 10.1007/4735_96
McLaughlin, 1999, Metals and micronutrients—food safety issues, Field Crops Res., 60, 143, 10.1016/S0378-4290(98)00137-3
Chaney, 1997, Phytoremediation of soil metals, Curr. Opin. Biotechnol., 8, 279, 10.1016/S0958-1669(97)80004-3
Baker, 1989, Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81
Robinson, 1998, The potential of Thlaspi caerulescens for phytoremediation of contaminated soils, Plant Soil, 203, 47, 10.1023/A:1004328816645
Roosens, 2003, Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe, Plant Cell Environ., 26, 1657, 10.1046/j.1365-3040.2003.01084.x
Lane, 2000, A biological function for cadmium in marine diatoms, Proc Natl Acad Sci USA, 97, 4627, 10.1073/pnas.090091397
Butler, 1998, Acquisition and utilization of transition metal ions by marine organisms, Science, 281, 207, 10.1126/science.281.5374.207
Nriagu, 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134, 10.1038/333134a0
Kabata-Pendias, 2001
Jensen, 1992, Environmental cadmium in Europe, Rev. Environ. Contam. Toxicol., 125, 101
Lugon-Moulin, 2004, Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Adv. Agronomy, 83, 111, 10.1016/S0065-2113(04)83003-7
Wagner, 1993, Accumulation of cadmium in crop plants and its consequences to human health, Adv. Agronomy, 51, 173, 10.1016/S0065-2113(08)60593-3
Sauve, 2000, Speciation and complexation of cadmium in extracted soil solutions, Environ. Sci. Technol., 34, 291, 10.1021/es990202z
Antonovics, 1971, Heavy metal tolerance in plants, Adv. Environ Sci. Technol., 7, 1
Fox, 1998, Molecular biology of cation transport in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 669, 10.1146/annurev.arplant.49.1.669
Mäser, 2001, Phylogenetic relationships within cation transporter families of Arabidopsis, Plant Physiol., 126, 1646, 10.1104/pp.126.4.1646
Clemens, 1998, The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast, Proc. Natl. Acad. Sci. USA, 95, 12043, 10.1073/pnas.95.20.12043
Guerinot, 2000, The ZIP family of metal transporters, Biochim. Biophys. Acta, 1465, 190, 10.1016/S0005-2736(00)00138-3
Eide, 2004, The SLC39 family of metal ion transporters, Pflugers Arch., 447, 796, 10.1007/s00424-003-1074-3
Vert, 2002, IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth, Plant Cell, 14, 1233, 10.1105/tpc.001388
Korshunova, 1999, The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range, Plant Mol. Biol., 40, 37, 10.1023/A:1026438615520
Connolly, 2002, Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell, 14, 1347, 10.1105/tpc.001263
Cohen, 1998, The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants, Plant Physiol., 116, 1063, 10.1104/pp.116.3.1063
Grotz, 1998, Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency, Proc. Natl. Acad. Sci. USA, 95, 7220, 10.1073/pnas.95.12.7220
Pence, 2000, The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens, Proc. Natl. Acad. Sci. USA, 97, 4956, 10.1073/pnas.97.9.4956
Dalton, 2005, Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis, Proc. Natl. Acad. Sci. USA, 102, 3401, 10.1073/pnas.0406085102
Hinkle, 1992, Measurement of intracellular cadmium with fluorescent dyes. Further evidence for the role of calcium channels in cadmium uptake, J. Biol. Chem., 267, 25553, 10.1016/S0021-9258(19)74076-9
Perfus-Barbeoch, 2002, Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, Plant J., 32, 539, 10.1046/j.1365-313X.2002.01442.x
Williams, 2000, Emerging mechanisms for heavy metal transport in plants, Biochim. Biophys. Acta, 1465, 104, 10.1016/S0005-2736(00)00133-4
Mackenzie, 2004, SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1, Pflugers Arch., 447, 571, 10.1007/s00424-003-1141-9
Bressler, 2004, Divalent metal transporter 1 in lead and cadmium transport, Ann. N. Y. Acad. Sci., 1012, 142, 10.1196/annals.1306.011
Liu, 1997, Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene, J. Biol. Chem., 272, 11763, 10.1074/jbc.272.18.11763
Thomine, 2000, Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes, Proc. Natl. Acad. Sci. USA, 97, 4991, 10.1073/pnas.97.9.4991
Thomine, 2003, AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency, Plant J., 34, 685, 10.1046/j.1365-313X.2003.01760.x
Meharg, 2002, Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species, New Phytol., 154, 29, 10.1046/j.1469-8137.2002.00363.x
Terry, 2000, Selenium in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 401, 10.1146/annurev.arplant.51.1.401
Shibagaki, 2002, Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots, Plant J., 29, 475, 10.1046/j.0960-7412.2001.01232.x
Lombi, 2001, Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype, New Phytol., 149, 53, 10.1046/j.1469-8137.2001.00003.x
Hanikenne, 2005, A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae, Plant Physiol., 137, 428, 10.1104/pp.104.054189
Shenker, 2001, Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants, J. Environ. Qual., 30, 2091, 10.2134/jeq2001.2091
Harris, 2004, Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation, BMC Plant Biol., 4, 4, 10.1186/1471-2229-4-4
Clemens, 2002, A long way ahead: understanding and engineering plant metal accumulation, Trends Plant Sci., 7, 309, 10.1016/S1360-1385(02)02295-1
Salt, 1995, Mechanisms of cadmium mobility and accumulation in Indian mustard, Plant Physiol., 109, 1427, 10.1104/pp.109.4.1427
Kondo, 1984, Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis, Tetrahed Lett, 25, 3869, 10.1016/S0040-4039(01)91190-6
Grill, 1985, Phytochelatins: the principal heavy-metal complexing peptides of higher plants, Science, 230, 674, 10.1126/science.230.4726.674
Howe, 1992, Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii, Plant Physiol., 98, 127, 10.1104/pp.98.1.127
Hanikenne, 2003, Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance, New Phytol., 159, 331, 10.1046/j.1469-8137.2003.00788.x
Grill, 1989, Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase), Proc. Natl. Acad. Sci. USA, 86, 6838, 10.1073/pnas.86.18.6838
Ha, 1999, Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe, Plant Cell, 11, 1153, 10.1105/tpc.11.6.1153
Vatamaniuk, 1999, AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution, Proc. Natl. Acad. Sci. USA, 96, 7110, 10.1073/pnas.96.12.7110
Clemens, 1999, Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, EMBO J., 18, 3325, 10.1093/emboj/18.12.3325
Howden, 1992, Cadmium-sensitive mutants of Arabidopsis thaliana, Plant Physiol., 99, 100, 10.1104/pp.100.1.100
Larsson, 2002, Influence of prior Cd(2+) exposure on the uptake of Cd(2+) and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana, J. Exp. Bot., 53, 447, 10.1093/jexbot/53.368.447
Hamer, 1986, Metallothionein, Annu. Rev. Biochem., 55, 913, 10.1146/annurev.biochem.55.1.913
Cobbett, 2002, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 53, 159, 10.1146/annurev.arplant.53.100301.135154
Rauser, 1999, Structure and function of metal chelators produced by plants, Cell Biochem. Biophys., 31, 19, 10.1007/BF02738153
Ortiz, 1992, Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter, EMBO J., 11, 3491, 10.1002/j.1460-2075.1992.tb05431.x
Ortiz, 1995, Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein, J. Biol. Chem., 270, 4721, 10.1074/jbc.270.9.4721
Vögeli-Lange, 1990, Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides, Plant Physiol., 92, 1086, 10.1104/pp.92.4.1086
Salt, 1995, MgATP-dependent transport of phytochelatins across the tonoplast of oat roots, Plant Physiol., 107, 1293, 10.1104/pp.107.4.1293
Vatamaniuk, 2005, CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans, J. Biol. Chem., 280, 23684, 10.1074/jbc.M503362200
Kneer, 1992, Phytochelatins protect plant enzymes from heavy-metal poisoning, Phytochemistry, 31, 2663, 10.1016/0031-9422(92)83607-Z
Rauser, 2003, Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue, New Phytol., 158, 269, 10.1046/j.1469-8137.2003.00735.x
Leopold, 1999, Phytochelatins and heavy metal tolerance, Phytochemistry, 50, 1323, 10.1016/S0031-9422(98)00347-1
Salt, 1993, Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity, J. Biol. Chem., 268, 12297, 10.1016/S0021-9258(18)31388-7
Vatamaniuk, 2000, Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides, J. Biol. Chem., 275, 31451, 10.1074/jbc.M002997200
Hirschi, 1996, CAX1, an H+/Ca2+ antiporter from Arabidopsis, Proc. Natl. Acad. Sci. USA, 93, 8782, 10.1073/pnas.93.16.8782
Hirschi, 2000, Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance, Plant Physiol., 124, 125, 10.1104/pp.124.1.125
Pittman, 2004, Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter, Plant Mol. Biol., 56, 959, 10.1007/s11103-004-6446-3
Rauser, 1995, Phytochelatins and related peptides. Structure, biosynthesis, and function, Plant Physiol., 109, 1141, 10.1104/pp.109.4.1141
Lanquar, 2005, Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron, EMBO J., 24, 4041, 10.1038/sj.emboj.7600864
Green, 2003, Interactions between cadmium uptake and phytotoxic levels of zinc in hard red spring wheat, J. Plant Nutr., 26, 417, 10.1081/PLN-120017144
Gong, 2003, Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis, Proc. Natl. Acad. Sci. USA, 100, 10118, 10.1073/pnas.1734072100
Chen, 2006, An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis, Plant Physiol., 141, 108, 10.1104/pp.105.072637
Krämer, 1996, Free histidine as a metal chelator in plants that accumulate nickel, Nature, 379, 635, 10.1038/379635a0
Vacchina, 2003, Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation, Anal. Chem., 75, 2740, 10.1021/ac020704m
Axelsen, 2001, Inventory of the superfamily of P-type ion pumps in Arabidopsis, Plant Physiol., 126, 696, 10.1104/pp.126.2.696
Nies, 2003, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev., 27, 313, 10.1016/S0168-6445(03)00048-2
Hussain, 2004, P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis, Plant Cell, 16, 1327, 10.1105/tpc.020487
Mills, 2005, The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels, FEBS Lett., 579, 783, 10.1016/j.febslet.2004.12.040
Verret, 2004, Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance, FEBS Lett., 576, 306, 10.1016/j.febslet.2004.09.023
Choi, 2001, Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes, Planta, 213, 45, 10.1007/s004250000487
1999, L., Gabbrielli, R., Response to cadmium in higher plants, Environ. Exp. Bot., 41, 105, 10.1016/S0098-8472(98)00058-6
Kovalchuk, 2001, A sensitive transgenic plant system to detect toxic inorganic compounds in the environment, Nat. Biotechnol., 19, 568, 10.1038/89327
De Vos, 1992, Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus, Plant Physiol., 98, 853, 10.1104/pp.98.3.853
Schützendübel, 2002, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 53, 1351, 10.1093/jexbot/53.372.1351
Stohs, 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med., 18, 321, 10.1016/0891-5849(94)00159-H
Weber, 2006, Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri, Plant Cell Environ., 29, 950, 10.1111/j.1365-3040.2005.01479.x
Chen, 2003, Global transcriptional responses of fission yeast to environmental stress, Mol. Biol. Cell, 14, 214, 10.1091/mbc.E02-08-0499
Rea, 2004, Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase, Plant Physiol., 136, 2463, 10.1104/pp.104.048579
Clemens, 2002, A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance, J. Biol. Chem., 277, 18215, 10.1074/jbc.M201031200
Maier, 2003, Localization and functional characterization of metal-binding sites in phytochelatin synthases, Planta, 218, 300, 10.1007/s00425-003-1091-7
Nocito, 2002, Cadmium-induced sulfate uptake in maize roots, Plant Physiol., 129, 1872, 10.1104/pp.002659
Heiss, 1999, Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase, Plant Mol. Biol., 39, 847, 10.1023/A:1006169717355
Dominguez-Solis, 2001, The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance, J. Biol. Chem., 276, 9297, 10.1074/jbc.M009574200
Xiang, 1998, Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, Plant Cell, 10, 1539, 10.1105/tpc.10.9.1539
Schat, 1999, Plant responses to inadequate and toxic micronutrient availability: general and nutrient-specific mechanisms, 311
Schützendübel, 2001, Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots, Plant Physiol., 127, 887, 10.1104/pp.010318
Neumann, 1994, Heat-shock proteins induce heavy-metal tolerance in higher plants, Planta, 194, 360, 10.1007/BF00197536
Citovsky, 1998, Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism, Plant J., 16, 13, 10.1046/j.1365-313x.1998.00263.x
Ueki, 2002, The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein, Nat. Cell Biol., 4, 478, 10.1038/ncb806
Suzuki, 2001, Screening of cadmium-responsive genes in Arabidopsis thaliana, Plant Cell Environ., 24, 1177, 10.1046/j.1365-3040.2001.00773.x
Suzuki, 2002, Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis, Plant J., 32, 165, 10.1046/j.1365-313X.2002.01412.x
Kovalchuk, 2005, Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead, Mutat. Res., 570, 149, 10.1016/j.mrfmmm.2004.10.004
Sarry, 2006, The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses, Proteomics, 6, 2180, 10.1002/pmic.200500543
Vido, 2001, A proteome analysis of the cadmium response in Saccharomyces cerevisiae, J. Biol. Chem., 276, 8469, 10.1074/jbc.M008708200
Fauchon, 2002, Sulfur sparing in the yeast proteome in response to sulfur demand, Mol. Cell, 9, 713, 10.1016/S1097-2765(02)00500-2
Siripornadulsil, 2002, Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae, Plant Cell, 14, 2837, 10.1105/tpc.004853
Schat, 1997, Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris, Physiol. Plant., 101, 477, 10.1111/j.1399-3054.1997.tb01026.x
Zimmermann, 2004, GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox, Plant Physiol., 136, 2621, 10.1104/pp.104.046367
Kopriva, 2004, Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future, J. Exp. Bot., 55, 1775, 10.1093/jxb/erh185
Chaney, 1980, Health risks associated with toxic metals in municipal sludges, 59
Vatamaniuk, 2001, A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans, J. Biol. Chem., 276, 20817, 10.1074/jbc.C100152200
Wysocki, 2003, Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p, Biochem. Biophys. Res. Commun., 304, 293, 10.1016/S0006-291X(03)00584-9
Kobae, 2004, Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis, Plant Cell Physiol., 45, 1749, 10.1093/pcp/pci015
Desbrosses-Fonrouge, 2005, Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation, FEBS Lett., 579, 4165, 10.1016/j.febslet.2005.06.046
Andres-Colas, 2006, The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots, Plant J., 45, 225, 10.1111/j.1365-313X.2005.02601.x
Bert, 2003, Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri, Plant Soil, 249, 9, 10.1023/A:1022580325301
Schat, 2002, The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes, J. Exp. Bot., 53, 2381, 10.1093/jxb/erf107
Hartley-Whitaker, 2001, Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus, Plant Physiol., 126, 299, 10.1104/pp.126.1.299
Becher, 2004, Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri, Plant J., 37, 251, 10.1046/j.1365-313X.2003.01959.x
Weber, 2004, Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors, Plant J., 37, 269, 10.1046/j.1365-313X.2003.01960.x
Bernard, 2004, A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens, FEBS Lett., 569, 140, 10.1016/j.febslet.2004.05.036
Clemens, 2006, Evolution and function of phytochelatin synthases, J. Plant Physiol., 163, 319, 10.1016/j.jplph.2005.11.010
Beck, 2003, Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates, Phytochemistry, 62, 423, 10.1016/S0031-9422(02)00565-4
Tsuji, 2004, Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120, Biochem. Biophys. Res. Commun., 315, 751, 10.1016/j.bbrc.2004.01.122
Harada, 2004, A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity, Phytochemistry, 65, 3179, 10.1016/j.phytochem.2004.09.017
Lane, 2005, Biochemistry: a cadmium enzyme from a marine diatom, Nature, 435, 42, 10.1038/435042a