Mitoferrin is essential for erythroid iron assimilation

Nature - Tập 440 Số 7080 - Trang 96-100 - 2006
George Shaw1,2, John J. Cope1,3, Liangtao Li4, Kenneth Corson1, Candace Hersey5, Gabriele E. Ackermann1,6, Babette Gwynn7, Amy J. Lambert7, Rebecca A. Wingert5,8, David Traver5,9, Nikolaus S. Trede5,10, Bruce Barut5, Yi Zhou5, Emmanuel Minet1, Adriana Donovan5, Alison Brownlie5,11, Rena Balzan12, Mitchell J. Weiss13, Luanne L. Peters7, Jerry Kaplan4, Leonard I. Zon5, Barry H. Paw1
1Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
2Ohio State University College of Medicine, Columbus, USA
3University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, USA
4Department of Pathology, University of Utah School of Medicine, Salt Lake City, USA
5Howard Hughes Medical Institute, Stem Cell Program and Division of Hematology-Oncology, Children's Hospital Boston, Harvard Medical School, Boston, USA
6Kinderspital, Zürich, Zürich, Switzerland
7The Jackson Laboratory, Bar Harbor, USA
8Massachusetts General Hospital, Boston, USA
9University of California, San Diego, USA
10University of Utah, Salt Lake City, (USA)
11Xenon Pharmaceuticals, Burnaby, Canada
12Department of Physiology and Biochemistry, University of Malta, Msida, Malta
13Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004)

Napier, I., Ponka, P. & Richardson, D. R. Iron trafficking in the mitochondria: novel pathways revealed by disease. Blood 105, 1867–1874 (2005)

Lill, R. & Mühlenhoff, U. Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141 (2005)

Rouault, T. A. & Tong, W. H. Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Rev. Mol. Cell Biol. 6, 345–351 (2005)

Ransom, D. G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996)

Wohlrab, H. The human mitochondrial transport protein family: identification and protein regions significant for transport function and substrate specify. Biochim. Biophys. Acta 1709, 157–168 (2005)

Foury, F. & Roganti, T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 277, 24475–24483 (2002)

Mühlenhoff, U. et al. A specific role of the yeast mitochondrial carriers Mrs3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 278, 40612–40620 (2003)

Li, L. & Kaplan, J. A mitochondrial–vacuolar signalling pathway in yeast that affects iron and copper metabolism. J. Biol. Chem. 279, 33653–33661 (2004)

Zhang, Y., Lyver, E. R., Knight, S. A. B., Lesuisse, E. & Dancis, A. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J. Biol. Chem. 280, 19794–19807 (2005)

Shafizadeh, E. & Paw, B. H. Zebrafish as a model of human hematologic disorders. Curr. Opin. Hematol. 11, 255–261 (2004)

Griffin, K. J., Amacher, S. L., Kimmel, C. B. & Kimelman, D. Molecular identification of spadetail regulation of zebrafish trunk and tail mesoderm formation by the T-box genes. Development 125, 3379–3388 (1998)

Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunol. 4, 1238–1246 (2003)

Kobayashi, K. et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nature Genet. 22, 159–163 (1999)

Rosenberg, M. J. et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nature Genet. 32, 175–179 (2002)

Cantor, A. B. & Orkin, S. H. Hematopoietic development: a balancing act. Curr. Opin. Genet. Dev. 11, 513–519 (2001)

Lyons, S. E. et al. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc. Natl Acad. Sci. USA 99, 5454–5459 (2002)

Nasevicius, A. & Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genet. 26, 216–220 (2000)

Li, F. Y. et al. Characterization of a novel human putative mitochondrial transporter homologous to the yeast mitochondrial RNA splicing proteins 3 and 4. FEBS Lett. 494, 79–84 (2001)

Li, F. Y., Leibiger, B., Leibiger, I. & Larsson, C. Characterization of a putative murine mitochondrial transporter homology to hMRS3/4. Mamm. Genome 13, 20–23 (2002)

Li, Q. Z. et al. Rapid decrease of RNA level of a novel mouse mitochondrial solute carrier protein (Mscp) gene at 4–5 weeks of age. Mamm. Genome 12, 830–836 (2001)

Gregory, T. et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94, 87–96 (1999)

Cantor, A. B., Katz, S. G. & Orkin, S. H. Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation. Mol. Cell. Biol. 22, 4268–4279 (2002)

Sturrock, A., Alexander, J., Lamb, J., Craven, C. M. & Kaplan, J. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J. Biol. Chem. 265, 3139–3145 (1990)

Balzan, R., Bannister, W. H., Hunter, G. J. & Bannister, J. V. Escherichia coli iron superoxide dismutase targeted to the mitochondria of yeast cells protects the cells against oxidative stress. Proc. Natl Acad. Sci. USA 92, 4219–4223 (1995)

Surinya, K. H., Cox, T. C. & May, B. K. Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene. J. Biol. Chem. 272, 26585–26594 (1997)

Paw, B. H. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nature Genet. 34, 59–64 (2003)

Iuchi, I. & Yamamoto, M. Erythropoiesis in the developing rainbow trout, Salmo gairdneri irideus: histological and immunochemical detection of erythropoietic organs. J. Exp. Zool. 226, 409–417 (1983)

McKee, A. et al. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev. Biol. 5, 14 (2005)

Roy, C. N., Penny, D. M., Feder, J. N. & Enns, C. A. The hereditary hemochromatosis protein, HFE, specifically regulates transferrin-mediated iron uptake in HeLa cells. J. Biol. Chem. 274, 9022–9028 (1999)