Functional role of metalloproteins in genome stability
Tóm tắt
Cells contain a large number of metalloproteins that commonly harbor at least one metal ion cofactor. In metalloproteins, metal ions are usually coordinated by oxygen, sulfur, or nitrogen centers belonging to amino acid residues in the protein. The presence of the metal ion in metalloproteins allows them to take part in diverse biological processes, such as genome stability, metabolic catalysis, and cell cycle progression. Clinically, alteration of the function of metalloproteins in mammals is genetically associated with diseases characterized by DNA damage and repair defects. The present review focuses on the current perspectives of metal ion homeostasis in different organisms and summarizes the most recent understanding on magnesium, copper, iron, and manganese-containing proteins and their functional involvement in the maintenance of genome stability.
Tài liệu tham khảo
Abraham J, Balbo S, Crabb D, Brooks P J (2011). Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemiabreast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res, 35(12): 2113–2120
Acharya N, Johnson R E, Prakash S, Prakash L (2006). Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol, 26(24): 9555–9563
Aleshin A E, Zeng C, Bourenkov G P, Bartunik H D, Fromm H J, Honzatko R B (1998). The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 6(1): 39–50
Ambani L M, Van Woert M H, Murphy S (1975). Brain peroxidase and catalase in Parkinson disease. Arch Neurol, 32(2): 114–118
An X, Zhang C, Sclafani R A, Seligman P, Huang M (2015). The lateannotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. MicrobiologyOpen, 4(6): 941–951
Ansley D M, Wang B (2013). Oxidative stress and myocardial injury in the diabetic heart. J Pathol, 229(2): 232–241
Arigony A L, de Oliveira I M, Machado M, Bordin D L, Bergter L, Prá D, Henriques J A (2013). The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BioMed Res Int, 2013: 597282
Bachelard H S (1971). Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 125(1): 249–254
Banci L, Bertini I (2013). Metallomics and the cell: some definitions and general comments. Met Ions Life Sci, 12: 1–13
Barbosa L F, Cerqueira F M, Macedo A F, Garcia C C, Angeli J P, Schumacher R I, Sogayar M C, Augusto O, Carrì M T, Di Mascio P, Medeiros M H (2010). Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta, 1802(5): 462–471
Behrend L, Mohr A, Dick T, Zwacka R M (2005). Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol, 25(17): 7758–7769
Brosh R M (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer, 13(8): 542–558
Brown D R (2010). Metalloproteins and neuronal death. Metallomics, 2(3): 186–194
Brunori M, Giuffrè A, Sarti P (2005). Cytochrome c oxidase, ligands and electrons. J Inorg Biochem, 99(1): 324–336
Candas D, Li J J (2014). MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal, 20(10): 1599–1617
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G (1999). The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. Eur J Biochem, 259(1-2): 325–330
Cárdenas M L, Cornish-Bowden A, Ureta T (1998). Evolution and regulatory role of the hexokinases. Biochim Biophys Acta, 1401(3): 242–264
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell J L, Kowalczykowski S C (2010). DNA end resection by Dna2-Sgs1- RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature, 467(7311): 112–116
Chen Z, Sui J, Zhang F, Zhang C (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer, 6(3): 233–242
Chung J Y, Kim H J, Kim M (2015). The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci, 16(1): 1
Cooper C E, Torres J, Sharpe M A, Wilson M T (1997). Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett, 414(2): 281–284
Cruciat CM, Brunner S, Baumann F, Neupert W, Stuart R A (2000). The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem, 275 (24): 18093–18098
D’Agnillo F, Wood F, Porras C, Macdonald V W, Alayash A I (2000). Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium. Biochim Biophys Acta, 1495(2): 150–159
Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Met Ions Life Sci, 12: 241–278
Dong K, Addinall S G, Lydall D, Rutherford J C (2013). The yeast copper response is regulated by DNA damage. Mol Cell Biol, 33(20): 4041–4050
Doublié S, Tabor S, Long A M, Richardson C C, Ellenberger T (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391(6664): 251–258
Dowling D P, Di Costanzo L, Gennadios H A, Christianson DW(2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65(13): 2039–2055
Edenberg H J (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 30(1): 5–13
Eide D J (2006). Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7): 711–722
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30 (3): 253–264
Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495–516
Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012). Role of apoptosis in disease. Aging (Albany, NY), 4(5): 330–349
Franklin R B, Ma J, Zou J, Guan Z, Kukoyi B I, Feng P, Costello L C (2003). Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem, 96(2-3): 435–442
Frey A G, Bird A J, Evans-Galea M V, Blankman E, Winge D R, Eide D J (2011). Zinc-regulated DNA binding of the yeast Zap1 zincresponsive activator. PLoS ONE, 6(7): e22535
Gardner A F, Kelman Z (2014). DNA polymerases in biotechnology. Front Microbiol, 5: 659
Gari K, León Ortiz A M, Borel V, Flynn H, Skehel J M, Boulton S J (2012). MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science, 337(6091): 243–245
Garry D J, Mammen P P (2007). Molecular insights into the functional role of myoglobin. Adv Exp Med Biol, 618: 181–193
Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J B, Bertrand L, Verrax J, Calderon P B (2014). Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol, 89(2): 217–223
Goodarzi M, Moosavi-Movahedi A A, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury A A, Sheibani N (2014). Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc, 130: 561–567
Góth L (2008). Catalase deficiency and type 2 diabetes. Diabetes Care, 31(12): e93
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey R B, Hay N (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev, 15(11): 1406–1418
Gourianov N, Kluger R (2003). Cross-linked bis-hemoglobins: connections and oxygen binding. J Am Chem Soc, 125(36): 10885–10892
Gwanyanya A, Amuzescu B, Zakharov S I, Macianskiene R, Sipido K R, Bolotina V M, Vereecke J, Mubagwa K (2004). Magnesiuminhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol, 559(Pt 3): 761–776
Harper J W, Elledge S J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745
Hartwig A (2001). Role of magnesium in genomic stability. Mutat Res, 475(1-2): 113–121
Holzer A K, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell S B (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol, 66(4): 817–823
Horn D, Barrientos A (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 60(7): 421–429
Huttemann M, Lee I, Grossman L I, Doan J W, Sanderson T H (2012). Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. AdvExp Med Biol, 748: 237–264
Jacobo-Molina A, Ding J, Nanni R G, Clark A D, Lu X, Tantillo C, Williams R L, Kamer G, Ferris A L, Clark P (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA, 90(13): 6320–6324
Jiang N, Tan N S, Ho B, Ding J L (2007). Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol, 8 (10): 1114–1122
Johnson D C, Dean D R, Smith A D, Johnson M K (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem, 74(1): 247–281
Kaji A, Colowick S P (1965). Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism of the hexokinase reaction. J Biol Chem, 240(11): 4454–4462
Kamga C, Krishnamurthy S, Shiva S (2012). Myoglobin and mitochondria: a relationship bound by oxygen and nitric oxide. Nitric Oxide, 26(4): 251–258
Kang M Y, Kim H B, Piao C, Lee K H, Hyun J W, Chang I Y, You H J (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ, 20(1): 117–129
Kee Y, D’Andrea A D (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev, 24(16): 1680–1694
Kelley E E, Khoo N K, Hundley N J, Malik U Z, Freeman B A, Tarpey M M (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med, 48(4): 493–498
Keyer K, Imlay J A (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA, 93(24): 13635–13640
Kim J, Kil I S, Seok Y M, Yang E S, Kim D K, Lim D G, Park J W, Bonventre J V, Park K M (2006). Orchiectomy attenuates postischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem, 281(29): 20349–20356
Kim M, Lim J H, Ahn C S, Park K, Kim G T, Kim W T, Pai H S (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18(9): 2341–2355
Kim S J, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker P T, Weitzman S, Bohr V A, Kamp D W (2014). Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem, 289(9): 6165–6176
Lange S S, Takata K, Wood R D (2011). DNA polymerases and cancer. Nat Rev Cancer, 11(2): 96–110
Lee B S, Bi L, Garfinkel D J, Bailis A M (2000). Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol, 20(7): 2436–2445
Li J, Liu J, Wang G, Cha J Y, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, Kim W Y, Yun D J, Schumaker K S, Chen Z, Guo Y (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell, 27(3): 908–925
Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11(4): 376–381
Li Y, Mitaxov V, Waksman G (1999). Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci USA, 96(17): 9491–9496
Lill R, Hoffmann B, Molik S, Pierik A J, Rietzschel N, Stehling O, Uzarska M A, Webert H, Wilbrecht C, Mühlenhoff U (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508
Ling H, Boudsocq F, Woodgate R, Yang W (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell, 107(1): 91–102
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev, 114(8): 4366–4469
Lohman T M (1992). Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol, 6(1): 5–14
Ma Z, Jacobsen F E, Giedroc D P (2009). Coordination chemistry of bacterial metal transport and sensing. Chem Rev, 109(10): 4644–4681
Maret W (2010). Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics, 2(2): 117–125
Meyer A S, Blandino M, Spratt T E (2004). Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication. J Biol Chem, 279(32): 33043–33046
Miyabe I, Kunkel T A, Carr A M (2011). The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet, 7(12): e1002407
Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes A E, Puente J, Becker M I (2006). Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol, 176(6 Pt 1): 2690–2695
Moreira L G, Pereira L C, Drummond P R, De Mesquita J F (2013). Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS ONE, 8(12): e81979
Mori M (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl 2): 1616S–1620S
Mulichak A M, Wilson J E, Padmanabhan K, Garavito R M (1998). The structure of mammalian hexokinase-1. Nat Struct Biol, 5(7): 555–560
Nakano K, Bálint E, Ashcroft M, Vousden K H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289
Netz D J, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola J L, Lill R, Burgers P M, Pierik A J (2012). Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol, 8(1): 125–132
Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22(11): 1451–1464
Öhrvik H, Nose Y, Wood L K, Kim B E, Gleber S C, Ralle M, Thiele D J (2013). Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ectodomain. Proc Natl Acad Sci USA, 110(46): e4279–E4288
Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H (2004). Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 43(1): 19–30
Peers G, Price N M (2006). Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091): 341–344
Peng J, Stevenson F F, Doctrow S R, Andersen J K (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem, 280(32): 29194–29198
Plotnikov E Y, Chupyrkina A A, Pevzner I B, Isaev N K, Zorov D B (2009). Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta, 1792(8): 796–803
Purich D L, Fromm H J (1972). Activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 130(1): 63–69
Ravet K, Pilon M (2013). Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal, 19(9): 919–932
Rodrigo R, Libuy M, Feliú F, Hasson D (2013). Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 35(6): 773–790
Rolfs A, Hediger M A (1999). Metal ion transporters in mammals: structure, function and pathological implications. J Physiol, 518(Pt 1): 1–12
Rouault T A (2012). Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech, 5(2): 155–164
Rouault T A (2015). Iron-sulfur proteins hiding in plain sight. Nat Chem Biol, 11(7): 442–445
Sanvisens N, Romero A M, An X, Zhang C, De Llanos R, Martínez-Pastor M T, Bañó M C, Huang M, Puig S (2014). Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol, 34(17): 3259–3271
Sarker M M, Zhong M (2014). Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro. Indian J Pharmacol, 46(1): 40–45
Sawaya M R, Prasad R, Wilson S H, Kraut J, Pelletier H (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37): 11205–11215
Schiavone J R, Hassan HM(1988). The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli. J BiolChem, 263: 4269–4273.
Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11: 376–381
Schlieper G, Kim J H, Molojavyi A, Jacoby C, Laussmann T, Flögel U, Gödecke A, Schrader J (2004). Adaptation of the myoglobin knockout mouse to hypoxic stress. Am J Physiol Regul Integr Comp Physiol, 286(4): R786–R792
Schumacher S B, Stucki M, Hübscher U (2000). The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res, 28(2): 620–625
Scudiero R, Trinchella F, Riggio M, Parisi E (2007). Structure and expression of genes involved in transport and storage of iron in redblooded and hemoglobin-less antarctic notothenioids. Gene, 397(1-2): 1–11
Shah N, Inoue A, Woo Lee S, Beishline K, Lahti JM, Noguchi E (2013). Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res, 319(14): 2244–2253
Shapleigh J P, Hosler J P, Tecklenburg M M, Kim Y, Babcock G T, Gennis R B, Ferguson-Miller S (1992). Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3- CuB center. Proc Natl Acad Sci USA, 89(11): 4786–4790
Shefner JM, Reaume A G, Flood D G, Scott RW, Kowall NW, Ferrante R J, Siwek D F, Upton-Rice M, Brown R H (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53(6): 1239–1246
Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L (2005). Direct electron transfer between coppercontaining proteins and electrodes. Biosens Bioelectron, 20(12): 2517–2554
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem, 277(30): 26944–26949
Sivakamavalli J, Vaseeharan B (2015). Enzymatic elucidation of haemocyanin from Kuruma shrimp Marsupenaeus japonicus and its molecular recognition mechanism towards pathogens. J Biomol Struct Dyn, 33(6): 1302–1314
Soo K Y, Atkin J D, Horne M K, Nagley P (2009). Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations. J Neurochem, 108(3): 578–590
Srinivasan S, Avadhani N G (2012). Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med, 53(6): 1252–1263
Stehling O, Mascarenhas J, Vashisht A A, Sheftel A D, Niggemeyer B, Rösser R, Pierik A J, Wohlschlegel J A, Lill R (2013). Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab, 18(2): 187–198
Stehling O, Vashisht A A, Mascarenhas J, Jonsson Z O, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, Lill R (2012). MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science, 337(6091): 195–199
Sutton M D, Walker G C (2001). Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci USA, 98(15): 8342–8349
Tafuri F, Ronchi D, Magri F, Comi G P, Corti S (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci, 9: 336
Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355
Totzeck M, Hendgen-Cotta U B, Kelm M, Rassaf T (2014). Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS ONE, 9(8): e105951
Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K (2006). P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res, 26(2A): 983–988
Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655
Valentine J S, Doucette P A, Zittin Potter S (2005). Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem, 74(1): 563–593
van Brabant A J, Stan R, Ellis N A (2000). DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet, 1(1): 409–459
van Holde K E, Miller K I, Decker H (2001). Hemocyanins and invertebrate evolution. J Biol Chem, 276(19): 15563–15566
Waldron K J, Rutherford J C, Ford D, Robinson N J (2009). Metalloproteins and metal sensing. Nature, 460(7257): 823–830
Wang J, Sattar A K, Wang C C, Karam J D, Konigsberg WH, Steitz T A (1997). Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell, 89(7): 1087–1099
Wang X, Ira G, Tercero J A, Holmes A M, Diffley J F, Haber J E (2004). Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol, 24(16): 6891–6899
Whittaker J W (2012). Non-heme manganese catalase–the ‘other’ catalase. Arch Biochem Biophys, 525: 111–120.
Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65: 2039–2055
Wu A J, Penner-Hahn J E, Pecoraro V L (2004). Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev, 104(2): 903–938
Wu C, Yan L, Depre C, Dhar S K, Shen Y T, Sadoshima J, Vatner S F, Vatner D E (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol, 297(4): C928–C934
Xu W, Liu L Z, Loizidou M, Ahmed M, Charles I G (2002). The role of nitric oxide in cancer. Cell Res, 12(5-6): 311–320
Yang L, Arora K, Beard WA, Wilson S H, Schlick T (2004). Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly. J Am Chem Soc, 126(27): 8441–8453
Yoder D W, Hwang J, Penner-Hahn J E (2000). Manganese catalases. Met Ions Biol Syst, 37: 527–557
Yoon E J, Park H J, Kim G Y, Cho H M, Choi J H, Park H Y, Jang J Y, Rhim H S, Kang SM (2009). Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med, 41 (9): 611–617
Yu F, Sugawara T, Nishi T, Liu J, Chan P H (2006). Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. J Neurotrauma, 23(5): 595–603
Zamocky M, Furtmüller P G, Obinger C (2008). Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10(9): 1527–1548
Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5(10): 750–760
Zhang C, Guo H, Zhang J, Guo G, Schumaker K S, Guo Y (2010). Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell, 22(7): 2353–2369
Zhang C, Liu G, Huang M (2014a). Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition. Front Biol (Beijing), 9(2): 104–113
Zhang C, Liu Y (2015). Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med, 69(3): 255–266
Zhang C, Zhang F (2015a). Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell, 6 (2): 88–100
Zhang C, Zhang F (2015b). The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics, 3: 40–50
Zhang F, Zhang L, Zhang C (2015). Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumour Biol, doi:10. 1007/s13277–015–4445–4
Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M (2014b). Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proc Natl Acad Sci USA, 111(17): e1695–E1704
Zhou L, Sun C B, Liu C, Fan Y, Zhu H Y, Wu X W, Hu L, Li Q P (2015). Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells. Int J Clin Exp Pathol, 8(3): 2728–2736