Implication of self-throttling on combustion performance in a strut-based scramjet combustor
Tài liệu tham khảo
Yang, 2018, Preliminary experimental study on solid rocket fuel gas scramjet, Acta Astronaut., 153, 146, 10.1016/j.actaastro.2018.10.031
Heiser, 1994
Urzay, 2018, Supersonic combustion in air-breathing propulsion systems for hypersonic flight, Annu. Rev. Fluid Mech., 50, 593, 10.1146/annurev-fluid-122316-045217
Li, 2018, Experimental investigation on fuel distribution in a scramjet combustor with dual cavity, J. Propul. Power, 34, 552, 10.2514/1.B36749
Pantano, 2002, A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid Mech., 451, 329, 10.1017/S0022112001006978
Song, 2019, Mixing and combustion characteristics in a cavity-based supersonic combustor with different injection schemes, Acta Astronaut., 159, 584, 10.1016/j.actaastro.2019.02.012
Roos, 2019, Cavity enhanced jet interactions in a scramjet combustor, Acta Astronaut., 157, 162, 10.1016/j.actaastro.2018.12.032
Dong, 2019, Influence of the secondary flow control on the transverse gaseous injection flow field properties in a supersonic flow, Acta Astronaut., 165, 150, 10.1016/j.actaastro.2019.08.028
Li, 2019, Investigation on three mixing enhancement strategies in transverse gaseous injection flow fields: a numerical study, Int. J. Heat Mass Tran., 132, 484, 10.1016/j.ijheatmasstransfer.2018.12.038
Ben-Yakar, 1998, Experimental investigation of flame-holding capability of hydrogen transverse jet in supersonic cross-flow, Sympos. (Int.) Combust., 27, 2173, 10.1016/S0082-0784(98)80066-0
Qiu, 2020, Flowing residence characteristics in a dual-mode scramjet combustor equipped with strut flame holder, Aero. Sci. Technol., 99, 10.1016/j.ast.2020.105718
Zhang, 2019, Ignition characteristics in a thin strut-equipped dual mode combustor fueled with liquid kerosene, Acta Astronaut., 161, 125, 10.1016/j.actaastro.2019.05.013
Zhang, 2019, Flame oscillation characteristics in a kerosene fueled dual mode combustor equipped with thin strut flame holder, Acta Astronaut., 161, 222, 10.1016/j.actaastro.2019.05.037
McDaniel, 1988, Laser-induced-fluorescence visualization of transverse gaseous injection in a non-reacting supersonic combustor, J. Propul. Power, 4, 591, 10.2514/3.23105
Suneetha, 2020, Numerical investigation on implication of strut profile on combustion characteristics in a cavity based scramjet combustor, Acta Astronaut., 170, 623, 10.1016/j.actaastro.2020.02.025
Sriram, 2006, Improved prediction of plane transverse jets in supersonic crossflows, AIAA J., 44, 405, 10.2514/1.17114
Ukai, 2014, Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow, Exp. Therm. Fluid Sci., 52, 59, 10.1016/j.expthermflusci.2013.08.022
Gerdroodbary, 2017, Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor, Acta Astronaut., 132, 25, 10.1016/j.actaastro.2016.11.041
Pudsey, 2010, Numerical investigation of transverse jets through multiport injector arrays in a supersonic crossflow, J. Propul. Power, 26, 1225, 10.2514/1.39603
Lee, 2006, Characteristics of dual transverse injection in scramjet combustor, part 1: Mixing, J. Propul. Power, 22, 1012, 10.2514/1.14180
Yan, 2014, Numerical investigation of the non-reacting and reacting flow fields in a transverse gaseous injection channel with different species, Acta Astronaut., 105, 17, 10.1016/j.actaastro.2014.08.018
Yan, 2018, Nonlinear process in the mode transition in typical strut-based and cavity-strut based scramjet combustors, Acta Astronaut., 145, 250, 10.1016/j.actaastro.2018.01.061
Aso, 2005, Fundamental study of supersonic combustion in pure air flow with use of shock tunnel, Acta Astronaut., 57, 384, 10.1016/j.actaastro.2005.03.055
Candon, 2018, Numerical analysis and design optimization of supersonic after-burning with strut fuel injectors for scramjet engines, Acta Astronaut., 147, 281, 10.1016/j.actaastro.2018.04.012
Yang, 2016, Experimental study on combustion modes and thrust performance of a staged-combustor of the scramjet with dual-strut, Acta Astronaut., 122, 28, 10.1016/j.actaastro.2016.01.002
Hu, 2014, Experimental study of a flush wall scramjet combustor equipped with strut/wall fuel injection, Acta Astronaut., 104, 84, 10.1016/j.actaastro.2014.07.012
Han, 2015, Effects of self-throttling on combustion enhancement in supersonic flow with transverse injection, Int. J. Hydrogen Energy, 40, 8193, 10.1016/j.ijhydene.2015.04.093
Spaid, 1968, A study of the interaction of gaseous jets from transverse slots with supersonic external flows, AIAA J., 6, 205, 10.2514/3.4479
Bian, 2018, Characteristics and mixing enhancement of a self-throttling system in a supersonic flow with transverse injections, Int. J. Hydrogen Energy, 43, 13550, 10.1016/j.ijhydene.2018.05.114
Waidmann, 1994, Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET), DGLR Jahrbuch, 629
Waidmann, 1995, Supersonic combustion of hydrogen/air in a scramjet combustion chamber, Space Technol., 6, 421, 10.1016/0892-9270(95)00017-8
Waidmann, 1996, 1473
Segal, 2009, 25
Betelin, 2018, Numerical investigations of hybrid rocket engines, Acta Astronaut., 144, 363, 10.1016/j.actaastro.2018.01.009
Tyurenkova, 2016, Material combustion in oxidant flows: self-similar solutions, Acta Astronaut., 120, 129, 10.1016/j.actaastro.2015.11.033
Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149
Huang, 2010, Effect of cavity flame holder configuration on combustion flow field performance of integrated hypersonic vehicle, Sci. China Technol. Sci., 53, 2725, 10.1007/s11431-010-4062-9
Huang, 2012, Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows, Acta Astronaut., 73, 1, 10.1016/j.actaastro.2011.12.003
Roy, 2006, Review and assessment of turbulence models for hypersonic flows, Prog. Aero. Sci., 42, 469, 10.1016/j.paerosci.2006.12.002
Huang, 2017, Parametric effect on the flow and mixing properties of transverse gaseous injection flow fields with stream wise slot: a numerical study, Int. J. Hydrogen Energy, 42, 1252, 10.1016/j.ijhydene.2016.09.028
Huang, 2016, Mixing augmentation mechanism induced by the pseudo-shock wave in transverse gaseous injection flow fields, Int. J. Hydrogen Energy, 41, 10961, 10.1016/j.ijhydene.2016.04.078
Huang, 2014, Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches, Int. J. Hydrogen Energy, 39, 3914, 10.1016/j.ijhydene.2013.12.129
YiguangJu, 1994, Reduced kinetic mechanism of ignition for non-premixed hydrogen/air in a supersonic mixing layer, Combust. Flame, 99, 240, 10.1016/0010-2180(94)90127-9
Li, 2004, An updated comprehensive kinetic model of hydrogen combustion, Int. J. Chem. Kinet., 36, 566, 10.1002/kin.20026
Smirnov, 2014, Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrogen Energy, 39, 1122, 10.1016/j.ijhydene.2013.10.097
Smirnov, 2015, Supercomputing simulations of detonation of hydrogen-air mixtures, Int. J. Hydrogen Energy, 40, 11059, 10.1016/j.ijhydene.2015.07.027
Tyurenkova, 2012, Non-equilibrium diffusion combustion of a fuel droplet, Acta Astronaut., 75, 78, 10.1016/j.actaastro.2012.01.010
Trushlyakov, 2019, Combustion possibility assessment for separating launch-vehicle components during atmospheric phase of descent trajectory, Acta Astronaut., 159, 540, 10.1016/j.actaastro.2019.02.003
Tyurenkova, 2019, Flame propagation in weightlessness above the burning surface of material, Acta Astronaut., 159, 342, 10.1016/j.actaastro.2019.03.053
Tu, 2018
Jones, 1982, Calculation methods for reacting turbulent flows: a review, Combust. Flame, 48, 1, 10.1016/0010-2180(82)90112-2
Kumaran, 2009, Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen, Combust. Flame, 156, 826, 10.1016/j.combustflame.2009.01.008
Wang, 2016, Construction of one-step H2/O2 reaction mechanism for predicting ignition and its application in simulation of supersonic combustion, Int. J. Hydrogen Energy, 41, 19191, 10.1016/j.ijhydene.2016.09.010
Ó Conaire, 2004, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet., 36, 603, 10.1002/kin.20036
Wang, 2016, Construction of one-step H2/O2 reaction mechanism for predicting ignition and its application in simulation of supersonic combustion, Int. J. Hydrogen Energy, 41, 19191, 10.1016/j.ijhydene.2016.09.010
Baurle, 1998, A numerical and experimental investigation of a scramjet combustor for hypersonic missile applications, 3121
Gerlinger, 2008, Numerical investigation of mixing and combustion enhancement in supersonic combustor by strut induced streamwise vorticity, Aero. Sci. Technol., 12, 159, 10.1016/j.ast.2007.04.003
Rajasekaran, 2006, Numerical simulation of three-dimensional reacting flow in a model supersonic combustor, J. Propul. Power, 22, 820, 10.2514/1.14952
Ansys, 2011
Smirnov, 2015, Accumulation of errors in numerical simulations of chemically reacting gas dynamics, Acta Astronaut., 117, 338, 10.1016/j.actaastro.2015.08.013
Smirnov, 2014, Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39, 10748, 10.1016/j.ijhydene.2014.04.150
Huang, 2012, Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2–O2 in supersonic flows, Acta Astronaut., 76, 51, 10.1016/j.actaastro.2012.02.017
Choubey, 2018, Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor, Acta Astronaut., 145, 93, 10.1016/j.actaastro.2018.01.034
Potturi, 2014, Hybrid large-Eddy/Reynolds-averaged Navier–Stokes simulations of flow through a model Scramjet, AIAA J., 52, 1417, 10.2514/1.J052595
Im, 2016, Unstart phenomena induced by mass addition and heat release in a model scramjet, J. Fluid Mech., 797, 604, 10.1017/jfm.2016.282
Lakka, 2021, Implication of geometrical configuration of cavity on combustion performance in a strut-based scramjet combustor, Acta Astronaut., 178, 793, 10.1016/j.actaastro.2020.08.040