A Transformer-neutralized 0.6 V V DD 17–29 GHz LNA and its application to an RF front-end

Analog Integrated Circuits and Signal Processing - Tập 83 - Trang 173-186 - 2015
Sandipan Kundu1,2, Jeyanandh Paramesh1
1Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
2Intel Corporation, Hillsboro, USA

Tóm tắt

A low-noise (LNA) amplifier that combines transformer-neutralization with bandwidth enhancement is introduced to enable a compact design capable of operating from a widely scalable supply voltage. A supply-voltage scalable 17–29 GHz ultra-wideband (UWB) multi-stage LNA prototype employing a single transistor between V DD and ground in all stages, and using the aforementioned techniques, is fabricated in 130 nm CMOS. The LNA achieves 15.4 dB (18 dB) peak gain, 5.5 dB (4.7 dB) minimum NF and −12 dBm (−11 dBm) worst case IIP3 while consuming 6 mW (15 mW) power while operating with a 0.6 V (1.2 V) supply voltage. A 17–27 GHz quadrature receiver prototype employing a modified version of this LNA is also fabricated, with potential applications in wireless sensor and vehicular radar applications. The receiver achieves 22.2 dB (25.4 dB) of peak conversion gain, 8.7 dB (5.7 dB) minimum NF and −17 dBm (−15 dBm) worst case IIP3 while consuming 10.2 mW (24 mW) power from a 0.6 V (1.2 V) V DD .

Tài liệu tham khảo

Wu, W., Sanduleanu, M., Li, X., & Long, J. (2008). 17 GHz RF front-ends for low-power wireless sensor networks. IEEE Journal of Solid-State Circuits, 43(9), 1909–1919. Jain, V., Sundararaman, S., & Heydari, P. (2009). A 22-29-GHz UWB pulse-radar receiver front-end in 0.18-µm. IEEE Transactions on Microwave Theory and Techniques, 57(8), 1903–1914. Guan X & Hajimiri A (2002). A 24 GHz CMOS front-end. In Proc. ESSCIRC. Mazzanti A, Sosio M, Repossi M & Svelto F (2008). A 24 GHz Sub-Harmonic Receiver Front-End with Integrated Multi-Phase LO Generation in 65 nm CMOS. In IEEE International Solid-State Circuits Conference. Yu T & Rebeiz G (2009). A 4-channel 24–27 GHz CMOS differential phased-array receiver. In IEEE Radio Frequency Integrated Circuits Symposium. Wang H, Jiao C, Zhang L, Zeng D, Yang D, Wang Y & Yu Z (2011). A low-power ESD-protected 24 GHz receiver front-end with π-type input matching network. In IEEE International Symposium. on Circuits and Systems. Subramanian, V., Zhang, T., & Boeck, G. (2011). Low noise 24 GHz CMOS receiver for FMCW based wireless local positioning. IEEE Microwave and Wireless Components Letters, 21(10), 553–555. Kodkani R & Larson L (2009). A 24-GHz CMOS sub-harmonic mixer based zero-IF receiver with an improved active balun. In IEEE Custom Integrated Circuits Conference. Choi S.-S,Yu H.-Y & Kim Y.-H (2011). 2-Channel RF front-end design for K-band automotive multi-channel radar in 0.18 μm CMOS technology. In European Microwave Integrated Circuits Conference. Tsai, M.-H., & Hsu, S. (2011). A 24 GHz low-noise amplifier using RF junction varactors for noise optimization and CDM ESD protection in 90 nm CMOS. IEEE Microwave and Wireless Components Letters, 21(7), 374–376. Bao M, Jacobsson H, Aspemyr L, Mercha A & Carchon G (2005). A 20 GHz sub-1 V low noise amplifier and a resistive mixer in 90 nm CMOS technology. In Asia Pacific Microwave Conference. Yeh J.-F, Yang C.-Y, Kuo H.-C & Chuang H.-R (2009). A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier. In IEEE Radio Frequency Integrated Circuits Symposium. Chen C.-C, Yang H.-Y & Lin Y.-S (2009). A 21–27 GHz CMOS wideband LNA with 9.3 ± 1.3 dB gain and 103.9 ± 8.1 ps group-delay using standard 0.18 μm CMOS technology. In IEEE Radio and Wireless Symposium. Chiu Y.-T, Lin Y.-S & Chang J.-F (2010). A 18.85 mW 20-29 GHz wideband CMOS LNA with 3.85 ± 0.25 dB NF and 18.1 ± 1.9 dB gain. In IEEE MTT-S. Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S.-S. (2012). Design and analysis of a 21–29-GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Trans. on Microwave Theory and Techniques, 60(8), 2590–2604. Shen, J., & Kinget, P. (2008). A 0.5-V 8-bit 10-Ms/s pipelined ADC in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 43(4), 787–795. Ickes, N., Gammie, G., Sinangil, M., Rithe, R., Gu, J., Wang, A., et al. (2012). A 28 nm 0.6 V low-power DSP for mobile applications. IEEE Journal of Solid-State Circuits, 47(1), 35–46. Cassan, D., & Long, J. (2003). A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 38(3), 427–435. Kundu S & Paramesh J (2010). A 17 GHz Transformer-neutralized Current Re-use LNA and Its Application to a Low-power RF Front-end. In IEEE Radio Frequency Integrated Circuits Symposium. Liscidini A, Ghezzi C, Depaoli E, Albasini G, Bietti I & Castello R (2006). Common Gate Transformer Feedback LNA in a High IIP3 Current Mode RF CMOS. In IEEE Custom Integrated Circuits Conference. Ye R.-F, Horng T.-S & Wu J.-M (2011). Wideband common-gate low-noise amplifier with dual-feedback for simultaneous input and noise matching. In IEEE Radio Frequency Integrated Circuits Symposium. Cheng, C. C. (1955). Neutralization and unilateralization. IRE Trans. Circuit Theory, CT-2(2), 138–145. Lee, T. H. (2004). The Design of CMOS Radio-Frequency Integrated Circuits (2nd ed.). Cambridge: Cambridge University Press. Bevilacqua, A., & Niknejad, A. M. (2004). An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers. IEEE Journal of Solid-State Circuits, 39, 2259–2268. Zhang, H., Fan, X., & Sinencio, E. (2009). A low-power, linearized, ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits, 44(2), 320–330. Lo, Y.-T., & Kiang, J.-F. (2011). Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages. IEEE Transactions on Microwave Theory and Techniques, 59(9), 2285–2294. Khurram, M., & Hasan, S. (2012). A 3–5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Transactions on VLSI Systems, 20(3), 400–409.