Spatial structures in predator-prey communities— a nonlinear time delay diffusional model

Mathematical Biosciences - Tập 31 - Trang 73-85 - 1976
J.D. Murray1
1Mathematical Institute, Oxford University, Oxford, England

Tài liệu tham khảo

Bellman, 1963 Bogoliubov, 1961 Hutchinson, 1948, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50, 221, 10.1111/j.1749-6632.1948.tb39854.x Jones, 1962, On the nonlinear differential difference equation f'(x) = −αf(x−1)[1+f(x)], J. Math. Anal. Appl., 4, 440, 10.1016/0022-247X(62)90041-0 Jones, 1962, The existence of periodic solutions of f'(x) = f(x−1)[1+f(x)], J. Math. Anal. Appl., 5, 435, 10.1016/0022-247X(62)90017-3 May, 1973 Murray, 1976, On traveling wave solutions in a model for the Belousov-Zhabotinskii reaction, J. Theor. Biol., 56, 329, 10.1016/S0022-5193(76)80078-1 Murray, 1975, Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion, J. Theor. Biol., 52, 459, 10.1016/0022-5193(75)90012-0 Nicholson, 1954, An outline of the dynamics of animal populations, Aust. J. Zoo., 2, 9, 10.1071/ZO9540009 Noyes, 1974, Oscillatory chemical reactions, Ann. Rev. Phys. Chem., 25, 95, 10.1146/annurev.pc.25.100174.000523 Steele, 1974, Spatial hetereogeneity and population stability, Nature, 248, 83, 10.1038/248083a0 Stirzaker, 1975, On a population model, Math. Biosci., 23, 329, 10.1016/0025-5564(75)90045-0