Progress of photonic crystal fibers and their applications

Frontiers of Optoelectronics - Tập 2 - Trang 50-57 - 2009
Wei Chen1,2, Jinyan Li1,2, Peixiang Lu1
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
2State Key Laboratory of Optical Communication Technologies and Networks, Optical Fiber Department of Fiberhome Telecommunication Technologies Co., Ltd., Wuhan, China

Tóm tắt

In this article, the fabrication technologies of photonic crystal fibers (PCFs) and their applications at home and abroad were formulated at length, especially in fields such as large mode-area active PCFs, fiber lasers, birefringence fibers, sensors, high nonlinear PCFs, frequency transformation, dispersion compensation PCFs, wideband communication for optical network systems, and photonic band-gap fibers. Finally, according to the above analysis, the prospects and developing trends of PCFs were presented.

Tài liệu tham khảo

Kaiser P, Astle H W. Low-loss single-material fibers made from pure fused silica. The Bell System Technical Journal, 1974, 53(6): 1021–1039 Birks T A, Roberts P J, Russell P S J, Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 1995, 31(22): 1941–1943 Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537–1539 Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21 (19):1547–1549 Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963 Russell P S J. Photonic crystal fibers. Science, 2003, 299(5605): 358–362 Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641–2645 Ebendorff-Heidepriem H, Monro T, van Eijkelenborg M A, et al. Extruded polymer preforms for high-NA polymer microstructured fiber. In: Proceeding of OFC/NFOEC’2006, Anaheim. 2006, OThH4 Large M C J, Lwin R, Manos S, et al. Experimental studies of bandwidth behaviour in graded index microstructured polymer optical fibres. In: Proceeding of ECOC2007, Berlin. 2007, Session 4.1.3 Yao B, Ohsono K, Kurosawa Y, et al. Low-loss holey fiber. In: Proceedings of the 53rd IWCS/Focus, Pennsylvania. 2004, 135–139 Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1 Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollowcore photonic crystal fibres. Optics Express, 2005, 13(1): 236–244 Saitoh K, Tsuchida Y, Koshiba M, et al. Endlessly single-mode holey fibers: the influence of core design. Optics Express, 2005, 13 (26): 10833–10839 Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963 Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879–1881 Bonati G, Voelckel H, Gabler T, et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser. In: Proceeding of PhotonicsWest: Late Breaking Developments. San Jose, 2005, Session 5709-2a Limpert J, Schreiber T, Nolte S, et al. High-power air-clad largemode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818–823 Lavoute L, Roy P, Desfarges-Berthelemot A, et al. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration. In: Proceeding of OFC2006, Anaheim. 2006, OFK1 François V, Aboutorabi S S. Fracture strength of air-clad microstructured fibers. In: Proceeding of OFC/NFOEC’2007, Anaheim. 2007, OThA4 Schreiber T, Limpert J, Liem A, et al. Thermo-optical analysis of air-clad photonic crystal fiber lasers. In: Proceeding of OFC’2004, Anaheim. 2004. TuA2 Limpert J, Liem A, Reich M, et al. Low-nonlinearity singletransverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express, 2004, 12(7):1313–1319 Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a lowloss polarization maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680 Mitrofanov AV, Linik Y M, Buczynski R, et al. Highly birefringent silicate glass photonic crystal fiber with polarization controlled frequency shifted output: a promising fiber light source for nonlinear raman microspectroscopy. Optics Express, 2006, 14(22): 10645–10651 Roberts P J, Williams D P, Sabert H, et al. Design of low loss and highly birefringent hollow core photonic crystal fiber. Optics Express, 2006, 14(16): 7329–7341 Islam M N, Poole C D, Gordon J P. Soliton trapping in birefringent optical fibers. Optics Letters, 1989, 14(18): 1011–1013 Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber. Optics Express, 2004, 12(5): 791–796 Chen X, Li M J, Koh J, et al. Bending properties of hole-assisted single polarization fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA2 Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain measurement with PM-PCF based Sagnac interferometer. In: Proceedings of ECOC’2007, Berlin. 2007, Session 3.6.6 Delgado-Pinar M, Díez A, Torres-Peiró S, et al. Guidance and polarization properties of an anisotropic microstructured fibre. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.4 Foster M, Gaeta A. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143 Zhang R, Teipe J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800–6812 Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letter, 2000, 36(25): 2089–2090 Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-.attened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 2005, 13(23): 9516–9526 Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letter, 2000, 25(1): 25–27 Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365–8371 Gorbach AV, Skryabin D V, Stone J M, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854–9863 Nakajima K, Matsui T, Kurokawa K, et al. High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. Journal of Lightwave Technology, 2007, 25(9): 2719–2726 Yang S G, Zhang Y J, He L N, et al. Experimental demonstration of very high negative chromatic dispersion dual-core photonic crystal fiber. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA6 Yang S G, Zhang Y J, Peng X Z, et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 2006, 14 (7): 3015–3023 Murao T, Saitoh K, Florous N J, et al. Single-mode air-guiding photonic bandgap fiber with improved broadband transmission characteristics: the benefits of an anti-resonant core design. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA4 Skorobogatiy M, Dupuis A, Guo N. Design and fabrication of ferroelectric all-polymer hollow Bragg fibers for THz guidance. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA98 Bigot L, Pureur V, Jaouen Y, et al. Ytterbium-doped 2D solid core photonic bandgap fiber for laser operation at 980 nm. In: Proceedings of ECOC’2007, Berlin. 2007, Session 1.4.5 Taru T, Hou J, Knight J C. Raman gain suppression in all-solid photonic bandgap fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.1 Likhachev M E, Levchenko A E, Bubnov M M, et al. Low-loss dispersion-shifted solid-core photonic bandgap bragg fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.2 Goto R, Takenaga K, Matsuo S, et al. Solid photonic band-gap fiber with 400 nm bandwidth and loss below 4 dB/km at 1520 nm. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OLM7 Kosolapov A F, Semjonov S L, Denisov A N, et al. Mechanical strength and fatigue of microstructured optical fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA3 Stach M, Broeng J, Petersson A, et al. 10 Gbit/s 850 nm VCSEL based data transmission over 100 m-long multimode photonic crystal fibers. In: Proceedings of ECOC’2003, Rimini, 2003, Th3.3.3 Kurokawa K, Tajima K, Nakajima K. 10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, PDP5 Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1 Kurokawa K, Nakajima K, Tsujikawa K, et al. Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH2 Florous N, Saitoh K, Koshiba M. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms. Optics Express, 2006, 14(2): 901–913 Kwok C H, Chow C W, Tsang H K, et al. S/C/L-band wavelength conversion by cross-polarization modulation in a dispersion-flattened nonlinear photonic-crystal fiber. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThA4 Kim G H, Han Y G, Cho H S, et al. A novel fabrication method of versatile holey fibers with low bending loss and their optical characteristics. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OWI2 Kurashima T, Hiramatsu K, Aoyama H, et al. Potential of holeassisted fibres in optical access and in-house networks. In: Proceedings of ECOC’2007, Berlin. 2007, Session 6.1.1