Progress of photonic crystal fibers and their applications
Tóm tắt
In this article, the fabrication technologies of photonic crystal fibers (PCFs) and their applications at home and abroad were formulated at length, especially in fields such as large mode-area active PCFs, fiber lasers, birefringence fibers, sensors, high nonlinear PCFs, frequency transformation, dispersion compensation PCFs, wideband communication for optical network systems, and photonic band-gap fibers. Finally, according to the above analysis, the prospects and developing trends of PCFs were presented.
Tài liệu tham khảo
Kaiser P, Astle H W. Low-loss single-material fibers made from pure fused silica. The Bell System Technical Journal, 1974, 53(6): 1021–1039
Birks T A, Roberts P J, Russell P S J, Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 1995, 31(22): 1941–1943
Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537–1539
Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21 (19):1547–1549
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
Russell P S J. Photonic crystal fibers. Science, 2003, 299(5605): 358–362
Kumar V V R K, George A K, Knight J C, et al. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641–2645
Ebendorff-Heidepriem H, Monro T, van Eijkelenborg M A, et al. Extruded polymer preforms for high-NA polymer microstructured fiber. In: Proceeding of OFC/NFOEC’2006, Anaheim. 2006, OThH4
Large M C J, Lwin R, Manos S, et al. Experimental studies of bandwidth behaviour in graded index microstructured polymer optical fibres. In: Proceeding of ECOC2007, Berlin. 2007, Session 4.1.3
Yao B, Ohsono K, Kurosawa Y, et al. Low-loss holey fiber. In: Proceedings of the 53rd IWCS/Focus, Pennsylvania. 2004, 135–139
Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1
Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollowcore photonic crystal fibres. Optics Express, 2005, 13(1): 236–244
Saitoh K, Tsuchida Y, Koshiba M, et al. Endlessly single-mode holey fibers: the influence of core design. Optics Express, 2005, 13 (26): 10833–10839
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879–1881
Bonati G, Voelckel H, Gabler T, et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser. In: Proceeding of PhotonicsWest: Late Breaking Developments. San Jose, 2005, Session 5709-2a
Limpert J, Schreiber T, Nolte S, et al. High-power air-clad largemode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818–823
Lavoute L, Roy P, Desfarges-Berthelemot A, et al. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration. In: Proceeding of OFC2006, Anaheim. 2006, OFK1
François V, Aboutorabi S S. Fracture strength of air-clad microstructured fibers. In: Proceeding of OFC/NFOEC’2007, Anaheim. 2007, OThA4
Schreiber T, Limpert J, Liem A, et al. Thermo-optical analysis of air-clad photonic crystal fiber lasers. In: Proceeding of OFC’2004, Anaheim. 2004. TuA2
Limpert J, Liem A, Reich M, et al. Low-nonlinearity singletransverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express, 2004, 12(7):1313–1319
Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a lowloss polarization maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680
Mitrofanov AV, Linik Y M, Buczynski R, et al. Highly birefringent silicate glass photonic crystal fiber with polarization controlled frequency shifted output: a promising fiber light source for nonlinear raman microspectroscopy. Optics Express, 2006, 14(22): 10645–10651
Roberts P J, Williams D P, Sabert H, et al. Design of low loss and highly birefringent hollow core photonic crystal fiber. Optics Express, 2006, 14(16): 7329–7341
Islam M N, Poole C D, Gordon J P. Soliton trapping in birefringent optical fibers. Optics Letters, 1989, 14(18): 1011–1013
Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber. Optics Express, 2004, 12(5): 791–796
Chen X, Li M J, Koh J, et al. Bending properties of hole-assisted single polarization fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA2
Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain measurement with PM-PCF based Sagnac interferometer. In: Proceedings of ECOC’2007, Berlin. 2007, Session 3.6.6
Delgado-Pinar M, Díez A, Torres-Peiró S, et al. Guidance and polarization properties of an anisotropic microstructured fibre. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.4
Foster M, Gaeta A. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143
Zhang R, Teipe J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800–6812
Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letter, 2000, 36(25): 2089–2090
Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-.attened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 2005, 13(23): 9516–9526
Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letter, 2000, 25(1): 25–27
Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365–8371
Gorbach AV, Skryabin D V, Stone J M, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854–9863
Nakajima K, Matsui T, Kurokawa K, et al. High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. Journal of Lightwave Technology, 2007, 25(9): 2719–2726
Yang S G, Zhang Y J, He L N, et al. Experimental demonstration of very high negative chromatic dispersion dual-core photonic crystal fiber. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA6
Yang S G, Zhang Y J, Peng X Z, et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 2006, 14 (7): 3015–3023
Murao T, Saitoh K, Florous N J, et al. Single-mode air-guiding photonic bandgap fiber with improved broadband transmission characteristics: the benefits of an anti-resonant core design. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA4
Skorobogatiy M, Dupuis A, Guo N. Design and fabrication of ferroelectric all-polymer hollow Bragg fibers for THz guidance. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, JWA98
Bigot L, Pureur V, Jaouen Y, et al. Ytterbium-doped 2D solid core photonic bandgap fiber for laser operation at 980 nm. In: Proceedings of ECOC’2007, Berlin. 2007, Session 1.4.5
Taru T, Hou J, Knight J C. Raman gain suppression in all-solid photonic bandgap fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.1
Likhachev M E, Levchenko A E, Bubnov M M, et al. Low-loss dispersion-shifted solid-core photonic bandgap bragg fiber. In: Proceedings of ECOC’2007, Berlin. 2007, Session 7.1.2
Goto R, Takenaga K, Matsuo S, et al. Solid photonic band-gap fiber with 400 nm bandwidth and loss below 4 dB/km at 1520 nm. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OLM7
Kosolapov A F, Semjonov S L, Denisov A N, et al. Mechanical strength and fatigue of microstructured optical fibers. In: Proceedings of OFC/NFOEC’2007, Anaheim. 2007, OThA3
Stach M, Broeng J, Petersson A, et al. 10 Gbit/s 850 nm VCSEL based data transmission over 100 m-long multimode photonic crystal fibers. In: Proceedings of ECOC’2003, Rimini, 2003, Th3.3.3
Kurokawa K, Tajima K, Nakajima K. 10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, PDP5
Tajima K, Kurokawa K, Nakajima K, et al. Toward transmission applications with microstructured fibers. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH1
Kurokawa K, Nakajima K, Tsujikawa K, et al. Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThH2
Florous N, Saitoh K, Koshiba M. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms. Optics Express, 2006, 14(2): 901–913
Kwok C H, Chow C W, Tsang H K, et al. S/C/L-band wavelength conversion by cross-polarization modulation in a dispersion-flattened nonlinear photonic-crystal fiber. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OThA4
Kim G H, Han Y G, Cho H S, et al. A novel fabrication method of versatile holey fibers with low bending loss and their optical characteristics. In: Proceedings of OFC/NFOEC’2006, Anaheim. 2006, OWI2
Kurashima T, Hiramatsu K, Aoyama H, et al. Potential of holeassisted fibres in optical access and in-house networks. In: Proceedings of ECOC’2007, Berlin. 2007, Session 6.1.1