A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades
Tóm tắt
Từ khóa
Tài liệu tham khảo
Prosperetti, 2009
Cahn, 1958, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102
Allen, 1976, Mechanisms of phase transformations within the miscibility gap of Fe–rich Fe–Al alloys, Acta Metall., 24, 425, 10.1016/0001-6160(76)90063-8
Chen, 1998, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329, 10.1146/annurev.fluid.30.1.329
He, 2002, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys., 107, 309, 10.1023/A:1014527108336
He, 1997, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333, 10.1103/PhysRevE.55.R6333
He, 1997, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811, 10.1103/PhysRevE.56.6811
d'Humières, 1992, Generalized lattice-Boltzmann equations, vol. 159, 450
Lallemand, 2000, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546, 10.1103/PhysRevE.61.6546
d'Humières, 2002, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond. A, 360, 437, 10.1098/rsta.2001.0955
Qian, 1992, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 17, 479, 10.1209/0295-5075/17/6/001
Chen, 1992, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 45, R5339, 10.1103/PhysRevA.45.R5339
Ginzburg, 2003, Multireflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, 68, 10.1103/PhysRevE.68.066614
Dellar, 2002, Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations, Phys. Rev. E, 65, 10.1103/PhysRevE.65.036309
Geier, 2015, The cumulant lattice Boltzmann equation in three dimensions: theory and validation, Comput. Math. Appl., 70, 507, 10.1016/j.camwa.2015.05.001
Berger, 1984, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484, 10.1016/0021-9991(84)90073-1
Khokhlov, 1998, Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 519, 10.1006/jcph.1998.9998
MacNeice, 2000, PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330, 10.1016/S0010-4655(99)00501-9
Popinet, 2003, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572, 10.1016/S0021-9991(03)00298-5
Ji, 2010, A new adaptive mesh refinement data structure with an application to detonation, J. Comput. Phys., 229, 8981, 10.1016/j.jcp.2010.08.023
Zabelok, 2015, Adaptive kinetic-fluid solvers for heterogeneous computing architectures, J. Comput. Phys., 303, 455, 10.1016/j.jcp.2015.10.003
Tölke, 2006, An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations, Comput. Fluids, 35, 820, 10.1016/j.compfluid.2005.08.010
Yu, 2009, An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation, J. Comput. Phys., 228, 6456, 10.1016/j.jcp.2009.05.034
Eitel-Amor, 2013, A lattice-Boltzmann method with hierarchically refined meshes, Comput. Fluids, 75, 127, 10.1016/j.compfluid.2013.01.013
Hasert, 2014, Complex fluid simulations with the parallel tree-based lattice Boltzmann solver Musubi, J. Comput. Sci., 5, 784, 10.1016/j.jocs.2013.11.001
Fakhari, 2014, Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique, Phys. Rev. E, 89, 10.1103/PhysRevE.89.033310
Fakhari, 2015, Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM, Comput. Fluids, 107, 205, 10.1016/j.compfluid.2014.11.013
Fakhari, 2016, A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., 315, 434, 10.1016/j.jcp.2016.03.058
Geier, 2015, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 10.1103/PhysRevE.91.063309
Fakhari, 2013, Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers, Phys. Rev. E, 87, 10.1103/PhysRevE.87.023304
Clift, 1978
Bhaga, 1981, Bubbles in viscous liquids: shapes, wakes and velocities, J. Fluid Mech., 105, 61, 10.1017/S002211208100311X
Baumann, 1992, Vortex rings of one fluid in another in free fall, Phys. Fluids A, 4, 567, 10.1063/1.858328
Charles, 1960, The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces, J. Colloid Sci., 15, 105, 10.1016/0095-8522(60)90012-X
Blanchette, 2006, Partial coalescence of drops at liquid interfaces, Nat. Phys., 2, 254, 10.1038/nphys268
Chen, 2006, Partial coalescence between a drop and a liquid–liquid interface, Phys. Fluids, 18
Yue, 2006, A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids, Phys. Fluids, 18, 102102, 10.1063/1.2364144
Gilet, 2007, Critical parameters for the partial coalescence of a droplet, Phys. Rev. E, 75, 10.1103/PhysRevE.75.036303
Ray, 2010, Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface, J. Fluid Mech., 655, 72, 10.1017/S0022112010000662
Fakhari, 2010, Phase-field modeling by the method of lattice Boltzmann equations, Phys. Rev. E, 81, 10.1103/PhysRevE.81.036707
Sun, 2007, Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626, 10.1016/j.jcp.2006.05.025
Chiu, 2011, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 185, 10.1016/j.jcp.2010.09.021
Dellar, 2013, An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., 65, 129, 10.1016/j.camwa.2011.08.047
Dubois, 2011, Quartic parameters for acoustic applications of lattice Boltzmann scheme, Comput. Math. Appl., 61, 3404, 10.1016/j.camwa.2011.01.011
Suga, 2015, A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows, Comput. Math. Appl., 69, 518, 10.1016/j.camwa.2015.01.010
Guo, 2011, Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows, Philos. Trans. R. Soc. Lond. A, 369, 2283
Lee, 2010, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045, 10.1016/j.jcp.2010.07.007
Guo, 2011, Force imbalance in lattice Boltzmann equation for two-phase flows, Phys. Rev. E, 83, 10.1103/PhysRevE.83.036707
Fakhari, 2017, Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios, J. Comput. Phys., 334, 620, 10.1016/j.jcp.2017.01.025
Lagrava, 2012, Advances in multi-domain lattice Boltzmann grid refinement, J. Comput. Phys., 231, 4808, 10.1016/j.jcp.2012.03.015
Fakhari, 2009, Simulation of an axisymmetric rising bubble by a multiple relaxation time lattice Boltzmann method, Int. J. Mod. Phys. B, 23, 4907, 10.1142/S0217979209053965
Han, 1999, Secondary breakup of axisymmetric liquid drops, I: acceleration by a constant body force, Phys. Fluids, 11, 3650, 10.1063/1.870229
Fakhari, 2009, Simulation of falling droplet by the lattice Boltzmann method, Commun. Nonlinear Sci. Numer. Simul., 14, 3046, 10.1016/j.cnsns.2008.10.017
Jalaal, 2012, Fragmentation of falling liquid droplets in bag breakup mode, Int. J. Multiph. Flow, 47, 115, 10.1016/j.ijmultiphaseflow.2012.07.011
Fakhari, 2011, Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method, Comput. Fluids, 40, 156, 10.1016/j.compfluid.2010.08.020
Magaletti, 2013, The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids, J. Fluid Mech., 714, 95, 10.1017/jfm.2012.461
Dünweg, 2009, 89
