Designing a 0D/2D S‐Scheme Heterojunction over Polymeric Carbon Nitride for Visible‐Light Photocatalytic Inactivation of Bacteria

Angewandte Chemie - International Edition - Tập 59 Số 13 - Trang 5218-5225 - 2020
Pengfei Xia1,2, Shaowen Cao1,2, Bicheng Zhu1, Mingjin Liu1, Miusi Shi3, Jiaguo Yu1, Yufeng Zhang3
1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P.R. China
2these authors contributed equally to this work
3State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079 P. R. China

Tóm tắt

Abstract

Constructing heterojunctions between two semiconductors with matched band structure is an effective strategy to acquire high‐efficiency photocatalysts. The S‐scheme heterojunction system has shown great potential in facilitating separation and transfer of photogenerated carriers, as well as acquiring strong photoredox ability. Herein, a 0D/2D S‐Scheme heterojunction material involving CeO2quantum dots and polymeric carbon nitride (CeO2/PCN) is designed and constructed by in situ wet chemistry with subsequent heat treatment. This S‐scheme heterojunction material shows high‐efficiency photocatalytic sterilization rate (88.1 %) towards Staphylococcus aureus (S. aureus) under visible‐light irradiation (λ≥420 nm), which is 2.7 and 8.2 times that of pure CeO2(32.2 %) and PCN (10.7 %), respectively. Strong evidence of S‐scheme charge transfer path is verified by theoretical calculations, in situ irradiated X‐ray photoelectron spectroscopy, and electron paramagnetic resonance.

Từ khóa


Tài liệu tham khảo

 

10.1038/s41467-019-10218-9

10.1021/acs.chemrev.6b00075

 

10.1002/adfm.201900946

10.1016/j.ccr.2019.05.004

 

10.1038/nnano.2016.138

10.1021/ja072492m

 

10.1038/nmat2317

10.1002/adma.201500033

 

10.1016/j.apcatb.2017.05.068

10.1016/j.nanoen.2015.11.010

10.1016/j.apcatb.2018.11.010

 

10.1021/acs.chemrev.7b00286

10.1016/j.ccr.2018.12.013

 

10.1002/adma.201900281

10.1002/adma.201601694

10.1002/advs.201500389

 

10.1016/j.apcatb.2018.11.011

10.1002/adma.201802981

10.1002/adma.201400288

10.1039/C4EE02914C

10.1038/s41467-019-08827-5

 

10.1021/acs.jpcc.6b11938

10.1002/smll.201801353

10.1021/jp5024845

10.1002/anie.200903886

10.1002/ange.200903886

 

10.1002/anie.201705926

10.1002/ange.201705926

10.1002/anie.201813117

2019, Angew. Chem., 131, 2007, 10.1002/ange.201813117

 

10.1016/j.apcatb.2015.12.046

10.1002/anie.201700286

10.1002/ange.201700286

 

10.1002/anie.201504985

10.1002/ange.201504985

10.1002/adma.201501939

Nyquist R. A., 1971, Handbook of infrared and raman spectra of inorganic compounds and organic salts

https://doi.org/10.1016/C2009-1010-22109-X.

 

10.1515/pac-2014-1117

10.1021/cm0101069

10.1039/c3ta10851a

 

10.1002/adfm.201200922

10.1002/adma.201303611

10.1016/j.apcatb.2014.12.050

 

10.1021/ja954172l

10.1021/ed084p685

10.1039/C7TA09723A

 

10.1002/adfm.201600239

10.1016/j.nanoen.2017.05.038

 

10.1016/j.apcatb.2018.07.037

10.1002/anie.201508505

10.1002/ange.201508505

10.1021/jp9048956

10.1021/jp301026y

10.1002/adma.201303116

10.1021/nn405242t

10.1039/C7EN00063D

10.1002/advs.201900796

10.1016/j.apcatb.2017.03.085

 

10.1021/jacs.7b08861

10.1021/acsami.5b02649