Acoustic metamaterials: From local resonances to broad horizons

Science advances - Tập 2 Số 2 - 2016
Guancong Ma1, Ping Sheng1
1Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Tóm tắt

A review of the development of acoustic metamaterials, guided by their physical characteristics and novel functionalities.

Từ khóa


Tài liệu tham khảo

E. Yablonovitch, Inhibited spontaneous emission in solid-state Ephysics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

M. Sigalas, E. N. Economou, Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993).

M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993).

E. Yablonovitch, T. J. Gmitter, Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 63, 1950–1953 (1989).

R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, F. Meseguer, Sound attenuation by sculpture. Nature 378, 241 (1995).

F. R. Montero de Espinosa, E. Jiménez, M. Torres, Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998).

10.1126/science.1058847

10.1038/nphoton.2006.49

10.1126/science.1108759

10.1126/science.1133628

10.1038/nphoton.2007.28

G. W. Milton, J. R. Willis, On modifications of Newton’s second law and linear continuum elastodynamics. Proc. Phys. Soc. A 463, 855–880 (2007).

J. Mei G. Ma M. Yang J. Yang P. Sheng Acoustic Metamaterials and Phononic Crystals (Springer New York 2013) pp. 159–199.

S. Yao, X. Zhou, G. Hu, Experimental study on negative effective mass in a 1D mass–spring system. New J. Phys. 10, 043020 (2008).

10.1126/science.289.5485.1734

Z. Liu, C. T. Chan, P. Sheng, Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005).

10.1038/nmat1644

J. Li, C. T. Chan, Double-negative acoustic metamaterial. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 70, 055602 (2004).

Y. Lai, Y. Wu, P. Sheng, Z.-Q. Zhang, Hybrid elastic solids. Nat. Mater. 10, 620–624 (2011).

Y. Wu, Y. Lai, Z.-Q. Zhang, Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011).

M. Yang, G. Ma, Z. Yang, P. Sheng, Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

10.1038/nmat4164

Y. Ding, Z. Liu, C. Qiu, J. Shi, Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007).

J. Christensen, Z. Liang, M. Willatzen, Metadevices for the confinement of sound and broadband double-negativity behavior. Phys. Rev. B 88, 100301(R) (2013).

L. Fok, X. Zhang, Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011).

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, C. K. Kim, Acoustic metamaterial with negative density. Phys. Lett. A 373, 4464–4469 (2009).

10.1088/0953-8984/21/17/175704

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, C. K. Kim, Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).

10.1038/nature14678

M. Yang, G. Ma, Y. Wu, Z. Yang, P. Sheng, Homogenization scheme for acoustic metamaterials. Phys. Rev. B 89, 064309 (2014).

Y. Wu, Y. Lai, Z.-Q. Zhang, Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007).

10.1103/PhysRevB.76.134205

X. Zhou, G. Hu, Analytic model of elastic metamaterials with local resonances. Phys. Rev. B 79, 195109 (2009).

M. Ambati, N. Fang, C. Sun, X. Zhang, Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007).

Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

10.1103/PhysRevLett.110.244302

Y. Jing, J. Xu, N. X. Fang, Numerical study of a near-zero-index acoustic metamaterial. Phys. Lett. A 376, 2834–2837 (2012).

10.1103/PhysRevLett.111.055501

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

C. J. Naify, C.-M. Chang, G. McKnight, S. Nutt, Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108, 114905 (2010).

C. J. Naify, C.-M. Chang, G. McKnight, F. Scheulen, S. Nutt, Membrane-type metamaterials: Transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011).

C. J. Naify, C.-M. Chang, G. McKnight, S. Nutt, Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 124903 (2011).

G. Ma, M. Yang, Z. Yang, P. Sheng, Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013).

S. Yao, X. Zhou, G. Hu, Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 12, 103025 (2010).

J. Pierre, B. Dollet, V. Leroy, Resonant acoustic propagation and negative density in liquid foams. Phys. Rev. Lett. 112, 148307 (2014).

F. Lemoult, M. Fink, G. Lerosey, Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).

10.1038/nphys2480

H. Jia, M. Ke, R. Hao, Y. Ye, F. Liu, Z. Liu, Subwavelength imaging by a simple planar acoustic superlens. Appl. Phys. Lett. 97, 173507 (2010).

J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. J. Garcia-Vidal, A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7, 52–55 (2011).

10.1103/PhysRevLett.85.3966

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

S. Zhang, L. Yin, N. Fang, Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

C. M. Park, J. J. Park, S. H. Lee, Y. M. Seo, C. K. Kim, S. H. Lee, Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107, 194301 (2011).

J. J. Park, C. M. Park, K. J. B. Lee, S. H. Lee, Acoustic superlens using membrane-based metamaterials. Appl. Phys. Lett. 106, 051901 (2015).

V. A. Podolskiy, E. E. Narimanov, Near-sighted superlens. Opt. Lett. 30, 75–77 (2005).

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, X. Zhang, Far-field optical superlens. Nano Lett. 7, 403–408 (2007).

X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008).

10.1364/OE.14.008247

J. Christensen, F. J. García de Abajo, Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012).

V. M. García-Chocano, J. Christensen, J. Sánchez-Dehesa, Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, Y. Jing, Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015).

10.1038/nmat2561

10.1126/science.1125907

10.1126/science.1126493

10.1038/nmat2743

L. Xu, H. Chen, Conformal transformation optics. Nat. Photonics 9, 15–23 (2015).

H. Chen, C. T. Chan, Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43, 113001 (2010).

A. N. Norris, Acoustic cloaking. Acoust. Today 11, 38–46 (2015).

S. A. Cummer, D. Schurig, One path to acoustic cloaking. New J. Phys. 9, 45 (2007).

H. Chen, C. T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).

D. Torrent, J. Sánchez-Dehesa, Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008).

G. W. Milton, M. Briane, J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).

10.1103/PhysRevLett.106.024301

10.1103/PhysRevLett.101.203901

10.1103/PhysRevLett.106.253901

10.1038/nmat3901

10.1038/srep01427

W. Kan, V. M. García-Chocano, F. Cervera, B. Liang, X.-Y. Zou, L.-L. Yin, J. Cheng, J. Sánchez-Dehesa, Broadband acoustic cloaking within an arbitrary hard cavity. Phys. Rev. Appl. 3, 064019 (2015).

V. M. García-Chocano, L. Sanchis, A. Díaz-Rubio, J. Martínez-Pastor, F. Cervera, R. Llopis-Pontiveros, J. Sánchez-Dehesa, Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99, 074102 (2011).

M. D. Guild, A. Alù, M. R. Haberman, Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129, 1355–1365 (2011).

10.1103/PhysRevLett.110.124301

C. A. Rohde, T. P. Martin, M. D. Guild, C. N. Layman, C. J. Naify, M. Nicholas, A. L. Thangawng, D. C. Calvo, G. J. Orris, Experimental demonstration of underwater acoustic scattering cancellation. Sci. Rep. 5, 13175 (2015).

Z. Liang, J. Li, Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

Y. Li, B. Liang, Z.-M. Gu, X.-Y. Zou, J.-C. Cheng, Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl. Phys. Lett. 103, 053505 (2013).

10.1103/PhysRevLett.105.233908

Y. Wu, J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 102, 183105 (2013).

Q. Wei, Y. Cheng, X.-J. Liu, Acoustic total transmission and total reflection in zero-index metamaterials with defects. Appl. Phys. Lett. 102, 174104 (2013).

F. Liu, Z. Liu, Elastic waves scattering without conversion in metamaterials with simultaneous zero indices for longitudinal and transverse waves. Phys. Rev. Lett. 115, 175502 (2015).

R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, J.-C. Cheng, A broadband acoustic omnidirectional absorber comprising positive-index materials. Appl. Phys. Lett. 99, 193507 (2011).

A. Climente, D. Torrent, J. Sánchez-Dehesa, Omnidirectional broadband acoustic absorber based on metamaterials. Appl. Phys. Lett. 100, 144103 (2012).

C. J. Naify, T. P. Martin, C. N. Layman, M. Nicholas, A. L. Thangawng, D. C. Calvo, G. J. Orris, Underwater acoustic omnidirectional absorber. Appl. Phys. Lett. 104, 073505 (2014).

X. Jiang, B. Liang, X.-Y. Zou, L.-L. Yin, J.-C. Cheng, Broadband field rotator based on acoustic metamaterials. Appl. Phys. Lett. 104, 083510 (2014).

X. Jiang, L. Zhang, B. Liang, X.-Y. Zou, J.-C. Cheng, Radiation directivity rotation by acoustic metamaterials. Appl. Phys. Lett. 107, 093506 (2015).

C. Shen, J. Xu, N. X. Fang, Y. Jing, Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys. Rev. X 4, 041033 (2014).

C. Ren, Z. Xiang, Z. Cen, Design of acoustic devices with isotropic material via conformal transformation. Appl. Phys. Lett. 97, 044101 (2010).

P. W. Klipsch, A low frequency horn of small dimensions. J. Acoust. Soc. Am. 13, 137–144 (1941).

Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan, J. Wang, S. Han, S. Lee, J. Li, Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

Y. Xie, B.-I. Popa, L. Zigoneanu, S. A. Cummer, Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

T. Frenzel, J. D. Brehm, T. Bückmann, R. Schittny, M. Kadic, M. Wegener, Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013).

Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, J.-C. Cheng, Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012).

Y. Li, G. Yu, B. Liang, X. Zou, G. Li, S. Cheng, J. Cheng, Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014).

M. Molerón, M. Serra-Garcia, C. Daraio, Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014).

K. Tang, C. Qiu, J. Lu, M. Ke, Z. Liu, Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. J. Appl. Phys. 117, 024503 (2015).

Y. Li, B. Liang, X.-Y. Zou, J.-C. Cheng, Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett. 103, 063509 (2013).

X. Cai, Q. Guo, G. Hu, J. Yang, Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105, 121901 (2014).

Y. Cheng, C. Zhou, B. G. Yuan, D. J. Wu, Q. Wei, X. J. Liu, Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances. Nat. Mater. 14, 1013–1019 (2015).

Y. Li, B. Liang, Z.-M. Gu, X.-Y. Zou, J.-C. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013).

Y. Li, X. Jiang, R.-Q. Li, B. Liang, X.-Y. Zou, L.-L. Yin, J.-C. Cheng, Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014).

J. Mei, Y. Wu, Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J. Phys. 16, 123007 (2014).

P. Peng, B. Xiao, Y. Wu, Flat acoustic lens by acoustic grating with curled slits. Phys. Lett. A 378, 3389–3392 (2014).

Y. Xie, A. Konneker, B.-I. Popa, S. A. Cummer, Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

10.1038/ncomms6553

W. Wang, Y. Xie, A. Konneker, B.-I. Popa, S. A. Cummer, Design and demonstration of broadband thin planar diffractive acoustic lenses. Appl. Phys. Lett. 105, 101904 (2014).

K. Tang, C. Qiu, M. Ke, J. Lu, Y. Ye, Z. Liu, Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep. 4, 6517 (2014).

10.1103/PhysRevApplied.4.024003

J. P. Arenas, M. J. Crocker, Recent trends in porous sound-absorbing materials. J. Sound Vib. 44, 12–17 (2010).

D.-Y. Maa, Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861–2866 (1998).

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, P. Sheng, Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).

10.1038/nmat3994

X. Jiang, B. Liang, R.-Q. Li, X.-Y. Zou, L.-L. Yin, J.-C. Cheng, Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. 105, 243505 (2014).

P. Wei, C. Croënne, S. T. Chu, J. Li, Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104, 121902 (2014).

J. Z. Song, P. Bai, Z. H. Hang, Y. Lai, Acoustic coherent perfect absorbers. New J. Phys. 16, 033026 (2014).

Y. Duan, J. Luo, G. Wang, Z. H. Hang, B. Hou, J. Li, P. Sheng, Y. Lai, Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci. Rep. 5, 12139 (2015).

10.1103/PhysRevB.91.020301

J. R. Piper, V. Liu, S. Fan, Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).

M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, P. Sheng, Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015).

A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. U.S.A. 107, 7230–7234 (2010).

F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, C. Daraio, Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014).

J. Lydon, M. Serra-Garcia, C. Daraio, Local to extended transitions of resonant defect modes. Phys. Rev. Lett. 113, 185503 (2014).

10.1103/PhysRevLett.113.014301

10.1103/PhysRevLett.113.175503

B.-I. Popa, S. A. Cummer, Nonreciprocal active metamaterials. Phys. Rev. B 85, 205101 (2012).

B.-I. Popa, L. Zigoneanu, S. A. Cummer, Tunable active acoustic metamaterials. Phys. Rev. B 88, 024303 (2013).

L. Airoldi, M. Ruzzene, Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011).

F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, M. Ruzzene, Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012).

10.1038/ncomms4398

S. Xiao, G. Ma, Y. Li, Z. Yang, P. Sheng, Active control of membrane-type acoustic metamaterial by electric field. Appl. Phys. Lett. 106, 091904 (2015).

10.1038/ncomms6905

10.1016/j.wavemoti.2013.02.006

10.1038/nphoton.2013.185

P. Roux, J. de Rosny, M. Tanter, M. Fink, The Aharonov-Bohm effect revisited by an acoustic time-reversal mirror. Phys. Rev. Lett. 79, 3170 (1997).

10.1126/science.1246957

10.1038/nmat2881

10.1103/PhysRevLett.103.104301

10.1038/nmat3072

10.1038/srep10880

M. Oudich, Y. Li, B. M. Assouar, Z. Hou, A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010).

M. Oudich, M. Senesi, M. B. Assouar, M. Ruzenne, J.-H. Sun, B. Vincent, Z. Hou, T.-T. Wu, Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011).

M. Rupin, F. Lemoult, G. Lerosey, P. Roux, Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Phys. Rev. Lett. 112, 234301 (2014).

R. Zhu, X. N. Liu, G. L. Huang, H. H. Huang, C. T. Sun, Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 86, 144307 (2012).

M. Farhat, S. Guenneau, S. Enoch, Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

M. Farhat, S. Guenneau, S. Enoch, A. B. Movchan, Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009).

N. Stenger, M. Wilhelm, M. Wegener, Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).

A. Colombi, P. Roux, S. Guenneau, M. Rupin, Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. J. Acoust. Soc. Am. 137, 1783–1789 (2015).

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, G. L. Huang, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014).

M. Dubois, M. Farhat, E. Bossy, S. Enoch, S. Guenneau, P. Sebbah, Flat lens for pulse focusing of elastic waves in thin plates. Appl. Phys. Lett. 103, 071915 (2013).

M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey, P. Sebbah, Time-driven superoscillations with negative refraction. Phys. Rev. Lett. 114, 013902 (2015)

M. Rupin, S. Catheline, P. Roux, Super-resolution experiments on lamb waves using a single emitter. Appl. Phys. Lett. 106, 024103 (2015).

S. Brûlé, E. H. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: Molding surface waves. Phys. Rev. Lett. 112, 133901 (2014).

10.1115/1.2804743

G. W. Milton The Theory of Composites (Cambridge Univ. Press Cambridge 2002).

10.1063/1.4709436

10.1002/adma.201200584

10.1126/science.1252291

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

Y. Li, Y. Wu, J. Mei, Double Dirac cones in phononic crystals. Appl. Phys. Lett. 105, 014107 (2014).

J. Mei, Y. Wu, C. T. Chan, Z.-Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012).

F. Liu, X. Huang, C. T. Chan, Dirac cones at k = 0 in acoustic crystals and zero refractive index acoustic materials. Appl. Phys. Lett. 100, 071911 (2012).

D. Torrent, D. Mayou, J. Sánchez-Dehesa, Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Phys. Rev. B 87, 115143 (2013).

10.1103/PhysRevLett.108.174301

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

10.1038/nphys3228

10.1038/nphoton.2014.248

10.1103/PhysRevLett.114.114301

10.1088/1367-2630/17/5/053016

V. Peano, C. Brendel, M. Schmidt, F. Marquardt, Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

10.1038/ncomms9260

10.1038/nphys3458

10.1103/PhysRevLett.115.104302

10.1038/ncomms9682

10.1126/science.aab0239

L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, W. T. M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. U.S.A. 24, 14495–14500 (2015).

10.1126/science.aaa9273

10.1088/0034-4885/70/6/R03

W. D. Heiss, The physics of exceptional points. J. Phys. Math. Theor. 45, 444016 (2012).

10.1038/nmat3495

10.1126/science.1258479

10.1126/science.1258004

X. Zhu, H. Ramezani, C. Shi, J. Zhu, X. Zhang, PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).

K. Ding G. Ma M. Xiao Z. Q. Zhang C. T. Chan The emergence coalescence and topological properties of multiple exceptional points and their experimental realization. arXiv:1509.06886 (2015).

C. Della Giovampaola, N. Engheta, Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014).

10.1073/pnas.1502276112

G. Ma thesis Hong Kong University of Science and Technology (2012).