A hybrid bioregulatory model of angiogenesis during bone fracture healing

Biomechanics and Modeling in Mechanobiology - Tập 10 Số 3 - Trang 383-395 - 2011
Véronique Peiffer1, Alf Gerisch2,3, Dirk Vandepitte1, Hans Van Oosterwyck4, Liesbet Geris5,4
1Division of Production Engineering, Machine Design and Automation, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
2Fachbereich Mathematik, Technische Universität Darmstadt, Darmstadt, Germany
3Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany
4Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
5Biomechanics Research Unit, Université de Liège, Liège, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson A, Chaplain M (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60: 857–900

Bailón-Plaza A, Van der Meulen M (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212: 191–209

Barnes G, Kostenuik P, Gerstenfeld L, Einhorn T (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14(11): 1805–1815

Bernatchez P, Soker S, Sirois M (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274(43): 31,047–31,054

Bostrom M (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res 355S: S116–S123

Bruder S, Scaduto T (2005) Cell-based strategies for bone regeneration: from developmental biology to clinical therapy. In: bone regeneration and repair. Humana Press, pp 67–92. doi: 10.1385/1-59259-863-3:067

Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257

Carter D, Beaupré G, Giori N, Helms J (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 3558: S41–S55

Checa S, Prendergast P (2008) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Engin 37(1): 129–145

Chen G, Niemeyer F, Wehner T, Simon U, Schuetz M, Pearcy M, Claes L (2009) Simulation of the nutrient supply in fracture healing. J Biomech 42(15): 2575–2583

Claes L, Heigele C (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3): 255–266

Colnot C, Thompson Z, Miclau T, Werb Z, Helms J (2003) Altered fracture repair in the absence of MMP9. Development 130: 4123–4133

De Smet F, Segura I, De Bock K, Hohensinner P, Carmeliet P (2009) Mechanisms of vessel branching. Arter Thromb Vasc Biol 29: 639–649. doi: 10.1161/ATVBAHA.109.185165

Dimitriou R, Tsiridis E, Giannoudis P (2005) Current concepts of molecular aspects of bone healing. Injury 36(12): 1392–1404

Duvall C, Taylor W, Weiss D, Wojtowicz A, Guldberg R (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2): 286–297

Fiedler J, Etzel N, Brenner R (2004) To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biomech 93: 990–998

Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner R (2005) VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Comm 334: 561–568

Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 25: 137–158

Geris L, Vander Sloten J, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobio. doi: 10.1007/s10237-010-0208-8

Gerisch A, Chaplain M (2006) Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems. Math Comput Model 43: 49–75

Gerisch A, Geris L (2007) Advances in mathematical modeling of biological systems, vol 1, Deutsch A, Brusch L, Byrne H, de Vries G, Herzel H-P, Boston, chap A finite volume spatial discretisation for taxis-diffusion-reaction systems with axi-symmetry: application to fracture healing. pp 303–316

Gerstenfeld L, Cullinane D, Barnes G, Graves D, Einhorn T (2003) Fracture healing as a post-natal developmental proces: molecular, spatial, and temporal aspects of its regulations. J Cell Biochem 88: 873–884

Harrison L, Cunningham F, Srömberg L, Goodship A (2003) Controlled induction of a pseudarthrosis: a study using a rodent model. J Orthop Trauma 17: 11–21

Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 291(41): 31,079–31,092

Lind M, Eriksen E, Bunger C (1996) Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and 6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts and U2-OS cells. Bone 18: 53–57

MacDougall J, McCabe M (1967) Diffusion coefficient of oxygen through tissues. Nature 215: 1173–1174

Marsh D (1998) Concepts of fraction union, delayed union, and nonunion. Clin Orthop Relat Res S355: S22–S30

Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95: 827–839

Metheny-Barlow L, Tian S, Hayes A, Li L (2004) Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res 68: 221–230

Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Comm 199: 380–386

Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95: 3146–3160

Olsen L, Sherratt J, Maini P, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14: 261–281

Qutub A, Popel A (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol 3(13). doi: 10.1186/1752-0509-3-13

Ryser M, Nigam N, Komarova S (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Miner Res 24(5): 860–870

Seeherman H, Li R, Wozney J (2003) A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg 85: 96–108

Shefelbine S, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12): 2440–2450

Sherrat J (1994) Chemotaxis and chemokinesis in eukaryotic cells: the keller-segel equations as an approximation to a detailed model. Bull Math Biol 56: 129–146

Street J, Bao M, deGuzman L, Bunting S, Peale FJ, Ferrara N, Steinmetz H, Hoeffel J, Cleland J, Daugherty A, van Bruggen N, Redmond H, Carano R, Filvaroff E (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS 99(15): 9656–9661

Sun S, Wheeler M, Obeyesekere M, Patrick CJ (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67: 313–337

Taguchi K, Ogawa R, Migata M, Hanawa H, Ito H, Orimo H (2005) The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Comm 331: 31–36

Weinberg C, Bell E (1985) Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells and adventitial fibroblasts in collagen lattices. J Cell Physiol 122: 410–414

Weiner R, Schmitt B, Podhaisky H (1997) ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl Numer Math 25: 303–319

Yoshizato K, Taira T, Yamamoto N (1985) Growth inhibition of human fibroblasts by reconstituted collagen fibrils. Biomed Res 6: 61–71