Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

Advances in Water Resources - Tập 92 - Trang 186-199 - 2016
G. Fourtakas1, B.D. Rogers1
1University of Manchester, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK M13 9PL

Tài liệu tham khảo

Amicarelli, 2014, SPH modelling of granular flows Bui, 2008, Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model, Int. J. Numer. Anal. Methods Geomech., 32, 1537, 10.1002/nag.688 Bui, 2007, Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method, J. Terramech., 44, 339, 10.1016/j.jterra.2007.10.003 Crespo, 2011, GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods, PLoS One, 6, e20685, 10.1371/journal.pone.0020685 Crespo, 2015, DualSPHysics: open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH), Comput. Phys. Commun., 187, 204, 10.1016/j.cpc.2014.10.004 Crespo, 2007, Boundary conditions generated by dynamic particles in SPH methods, Comput. Mater. Continua, 5, 173 Dalrymple, 2006, Numerical modeling of water waves with the SPH method, Coastal Eng., 53, 141, 10.1016/j.coastaleng.2005.10.004 Falappi, 2008, SPH simulation of sediment scour in reservoir sedimentation problems, 9 Fourtakas, 2013, Modelling sediment resuspension in industrial tanks using SPH, La Houille Blanche, 2, 39, 10.1051/lhb/2013014 Fourtakas, 2015, On the approximate zeroth and first-order consistency in the presence of 2-D irregular boundaries in SPH obtained by the virtual boundary particle methods, Int. J. Numer. Methods Fluids, 78, 475, 10.1002/fld.4026 Fraccarollo, 2002, Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183, 10.1017/S0022112002008455 Gingold, 1977, Smoothed particle hydrodynamic: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375, 10.1093/mnras/181.3.375 Gomez-Gesteira, 2012, Sphysics – development of a free-surface fluid solver – Part 1: theory and formulations, Comput. Geosci., 48, 289, 10.1016/j.cageo.2012.02.029 Gomez-Gesteira, 2010, State-of-the-art of classical SPH for free-surface flows, J. Hydraulic Res., 48, 6, 10.1080/00221686.2010.9641242 Hérault, 2010, SPH on GPU with CUDA, J. Hydraulic Res., 48, 74, 10.1080/00221686.2010.9641247 Hosseini, 2007, A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow, Int. J. Numer. Methods Heat Fluid Flow, 17, 715, 10.1108/09615530710777976 Jeong, 2013, Determining the viscosity and yield surface of marine sediments using modified Bingham models, Geosci. J., 17, 241, 10.1007/s12303-013-0038-7 Lind, 2012, Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys., 231, 1499, 10.1016/j.jcp.2011.10.027 Liu, 2010, Splashing phenomena during liquid droplet impact, Atomization Spray., 20, 10.1615/AtomizSpr.v20.i4.30 Manenti, 2012, SPH simulation of sediment flushing induced by a rapid water flow, J. Hydraul. Eng., 138, 272, 10.1061/(ASCE)HY.1943-7900.0000516 Marrone, 2011, δ-SPH model for simulating violent impact flows, Comput. Meth. Appl. Mech. Eng., 200, 1526, 10.1016/j.cma.2010.12.016 Mokos, 2014, Multi-phase modelling of violent hydrodynamics using smoothed particle hydrodynamics (SPH) on Graphics Processing Units (GPUs) Mokos, 2015, Multi-phase SPH modelling of violent hydrodynamics on GPUs, Comput. Phys. Commun., 196, 304, 10.1016/j.cpc.2015.06.020 Monaghan, 1989, On the problem of penetration in particle methods, J. Comput. Phys., 82, 1, 10.1016/0021-9991(89)90032-6 Monaghan, 1994, Simulating Free Surface Flows with SPH, J. Comput. Phys., 110, 399, 10.1006/jcph.1994.1034 Monaghan, 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543, 10.1146/annurev.aa.30.090192.002551 Monaghan, 1983, Shock simulation by the particle method SPH, J. Comput. Phys., 52, 374, 10.1016/0021-9991(83)90036-0 Papanastasiou, 1987, Flows of materials with yield, J. Rheol., 31, 385, 10.1122/1.549926 Ran, 2015, Incompressible SPH scour model for movable bed dam break flows, Adv. Water Res., 82, 39, 10.1016/j.advwatres.2015.04.009 Rodriguez-Paz, 2004, A corrected smooth particle hydrodynamics method for the simulation of debris flows, Numer. Methods Partial Differ. Equ., 20, 140, 10.1002/num.10083 Sakai, 2009, Erosion and seepage failure analysis of ground with evolution of bubbles using SPH Shakibaeinia, 2011, A mesh-free particle model for simulation of mobile-bed dam break, Adv. Water Res., 34, 794, 10.1016/j.advwatres.2011.04.011 Sibilla, 2007, SPH simulation of local scour processes Skillen, 2013, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction, Comput. Meth. Appl. Mech. Eng., 265, 163, 10.1016/j.cma.2013.05.017 Soares-Frazão, 2012, Dam-break flows over mobile beds: experiments and benchmark tests for numerical models, J. Hydraulic Res., 50, 364, 10.1080/00221686.2012.689682 Ulrich, 2013, Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems, Ocean Eng., 64, 109, 10.1016/j.oceaneng.2013.02.007 Vacondio, 2012, SPH modeling of shallow flow with open boundaries for practical flood simulation, J. Hydraulic Eng.-Asce, 138, 530, 10.1061/(ASCE)HY.1943-7900.0000543 Vacondio, 2013, Variable resolution for SPH: a dynamic particle coalescing and splitting scheme, Comput. Meth. Appl. Mech. Eng., 256, 132, 10.1016/j.cma.2012.12.014 Vand, 1948, Viscosity of solutions and suspensions. i. theory, J. Phys. Colloid Chem., 52, 277, 10.1021/j150458a001 Violeau, 2012