Combustion of heterogeneous nanostructural systems (Review)
Tóm tắt
The current status of research in the field of combustion of heterogeneous nanostructural systems is reviewed. Four classes of reactive media are considered: nanothermites, sol-gels, mechanically activated nanocomposites, and multilayer nanofilms. Based on the summary of publications, possible mechanisms of combustion in such systems and prospects of their further applications are discussed.
Tài liệu tham khảo
L. E. Fried, M. Riad Manaa, P. F. Pagoria, and R. L. Simpson, “Design and synthesis of energetic materials,” Annu. Rev. Mater. Res., 31, 291–321 (2001).
A. A. Gromov, T. A. Khabas, A. P. Il’in, et al., Combustion of Metal Nanopowders [in Russian], Deltaplan, Tomsk (2008).
W. Fahrner (ed.), Nanotechnology and Nanoelectronics, Springer-Verlag, Berlin-New York (2005).
C. Dubois, P. G. Lafleur, and C. Roy, “Polymer grafted metal nanoparticles for fuel applications,” J. Propul. Power, 23, No. 4, 651–658 (2007).
J. J. Granier and M. L. Pantoya, “Laser ignition of nanocomposite thermites,” Combust. Flame, 138, 373–383 (2004).
M. L. Pantoya and J. J. Granier, “Combustion behavior of highly energetic thermites: Nano versus micron composites,” Propellants, Explos., Pyrotech., 30, No. 1, 53–62 (2005).
M. L. Pantoya and J. J. Granier, “The effect of slow heating rates on the reaction mechanism of nano and micro composite thermite reactions,” J. Therm. Anal. Calorim., 85, No. 1, 37–43 (2006).
B. S. Bockmom, M. L. Pantoya, S. F. Son, et al., “Combustion velocities and propagation mechanisms of methastable interstitial composites,” J. Appl. Phys., 98, 1–7 (2005) — 064903.
B. W. Asay, S. F. Son, J. R. Busse, and D. M. Oschwald, “Ignition characteristics of metastable intermolecular composites,” Propellants, Explos., Pyrotech., 29, No. 4, 216–219 (2004).
K. C. Walter, D. R. Pesiri, and D. E. Wilson, “Manufacturing and performance of nanometric Al/MoO3 energetic materials,” J. Propul. Power, 23, No. 4, 645–650 (2007).
S. F. Son, B. W. Asay, T. J. Foley, et al., “Combustion of nanoscale Al/MoO3 thermite in microchannels,” ibid., pp. 715–721.
V. E. Sanders, B. W. Asay, T. J. Foley, et al., “Reaction propagation in four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3),” ibid., pp. 707–714.
J. A. Puszinski, C. J. Bulian, and J. J. Swiatkiewicz, “Processing and ignition characteristics of aluminum-bismuth trioxide nanothermic system,” ibid., pp. 698–706.
K. B. Plantier, M. L. Pantoya, and A. E. Gash, “Combustion wave speeds of nanocomposite Al/Fe2O3: The effect of Fe2O3 particle synthesis technique,” Combust. Flame, 140, 299–309 (2005).
B. Mehendale, R. Shende, S. Subramanian, et al., “Nanoenergetic composite of mesoporous iron oxide and aluminum nanoparticles,” J. Energ. Mater., 24, 341–360 (2006).
A. Prakash, A. V. McCormick, and M. R. Zachariah, “Aero-sol-gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials,” Chem. Mater., 16, 1466–1471 (2004).
W. L. Perry, B. L. Smith, C. J. Bulian, et al., “Nanoscale tungsten oxides for methastable intermolecular composites,” Propellants, Explos., Pyrotech., 29, No. 2, 99–105 (2004).
J. J. Kingsley and K. C. Patil, “A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials,” Mater. Lett., 6, 427–432 (1988).
K. C. Patil, M. S. Hegde, Rattan Tanu, and S. T. Aruna, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Sci., Singapore (2008).
S. T. Aruna and A. S. Mukasyan, “Combustion synthesis and nanomaterials,” Curr. Opin. Solid State Mater. Sci., 12, 44–50 (2008).
R. M. Cornell, The Iron Oxides, Wiley-VCH, Weinheim (2003).
E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energ. Combust. Sci., 26, No. 1, 57–78 (2000).
A. Varma, A. S. Mukasyan, K. Deshpande, et al., “Combustion synthesis of nanoscale oxide powders: mechanism, characterization and properties,” Mater. Res. Soc. Symp. Proc., 800, 113–124 (2007).
A. S. Mukasyan, P. Epstein, and P. Dinka, “Solution combustion synthesis of nanomaterials,” Proc. Combust. Inst., 31, No. 2, 1789–1795 (2007).
A. S. Mukasyan and P. Dinka, “Novel approaches for solution combustion synthesis of nano-materials,” Int. J. SHS, 16, No. 1, 23–35 (2007).
K. C. Patil, S. T. Aruna, and S. Ekambaram, “Combustion synthesis,” Curr. Opin. Solid State Mater. Sci., 2, 158–165 (1997).
K. C. Patil, S. T. Aruna, and T. Mimani, “Combustion synthesis: an update,” Curr. Opin. Solid State Mater. Sci., 6, 507–512 (2002).
K. Deshpande, A. S. Mukasyan, and A. Varma, “Direct synthesis of iron oxide nanopowders by combustion approach: Reaction mechanism and properties,” Chem. Mater., 16, No. 24, 4896–4904 (2004).
K. Wieczorek-Ciurowa and A. J. J. Kozak, “The thermal decomposition of Fe(NO3)(3)9H(2)O,” Thermal Anal. Calor., 58, 647 (1999).
A. G. Gasparyan and A. S. Shteinberg, “Macrokinetics of reaction and thermal explosion in Ni and Al powder mixtures,” Combust., Expl., Shock Waves, 24, No. 3, 324–330 (1988).
L. Thiers, A. S. Mukasyan, and A. Varma, “Thermal explosion in Ni-Al system: influence of reaction medium microstructure,” Combust. Flame, 131, Nos. 1–2, 198–209 (2002).
Z. Yue, L. Li, J. Zhou, et al., “Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels,” Mater. Sci. Eng., B, 64, 68–72 (1999).
J. McKittrick, L. E. Shea, C. F. Bacalski, and E. J. Bosze, “The influence of processing parameters on luminescent oxides produced by combustion synthesis,” Displays, 19, No. 4, 169–172 (1999).
A. U. Limaye and J. J. Helble, “Effect of precursor and solvent on morphology of zirconia nanoparticles produced by combustion aerosol synthesis,” J. Amer. Ceram. Soc., 86, No. 2, 273–278 (2003).
Choong-Hwan Jung, Sahil Jalota, and Sarit B. Bhaduri, “Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere,” Mater. Lett., 59, Nos. 19–20, 2426–2432 (2005).
K. H. Wu, C. H. Yu, Y. C. Chang, and D. N. Horng, “Effect of pH on the formation and combustion process of sol-gel auto-combustion derived NiZn ferrite/SiO2 composites,” J. Solid State Chem., 177, No. 11, 4119–4125 (2004).
K. H. Wu, Y. C. Chang, T. C. Chang, et al., “Effects of SiO2 content and solution pH in raw materials on Ni—Zn ferrite magnetic properties,” J. Magn. Magn. Mater., 283, Nos. 2–3, 380–384 (2004).
R. D. Purohit, B. P. Sharma, K. T. Pillia, and A. K. Tyagi, “Ultrafine ceria powders via glycinenitrate combustion,” Mater. Res. Bull., 36, 2711 (2001).
T. M. Tillotson, A. E. Gash, R. L. Simpson, et al., “Nanostructured energetic materials using sol-gel methodologies,” J. Non-Cryst. Solids, 285, 338–345 (2001).
B. J. Clapsaddle, A. E. Gash, J. H. Satcher, and R. L. Simpson, “Silicon oxide in an iron (III) oxide matrix: The sol-gel synthesis and characterization of Fe—Si mixed oxide nanocomposites that contain iron oxide as the major phase,” J. Non-Cryst. Solids, 331, 190–201 (2003).
P. Dinka and A. Mukasyan, “In situ preparation of the supported catalysts by solution combustion synthesis,” J. Phys. Chem., 109, No. 46, 21627–21633 (2005).
A. S. Rogachev, H. E. Grigoryan, and D. Yu. Kovalev, “Combustion synthesis and structure formation in the sol-gel systems,” in: Abstracts of the Indo-Russian Workshop on Self-Propagating High Temperature Synthesis (November 27–27, 2008, Bangalore, India), p. IL–02.
S. Sharma and M. S. Hegde, “Single step direct coating of 3-way catalysts on cordierite monolith by solution combustion method: High catalytic activity of Ce0.98Pd0.02O2−δ ,” Catal. Lett., 112, 69–75 (2006).
A. S. Mukasyan and P. Dinka, “Novel method for synthesis of nano-materials: combustion of active impregnated layer,” J. Adv. Eng. Mater., 9, 653–657 (2007).
T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, “Mechanochemical synthesis of intermetallic compounds,” Usp. Khim., 70, No. 1, 52–71 (2001).
T. Grigorieva, M. Korchagin, and N. Lyakhov, “Combination of SHS and mechanochemical synthesis for nanopowder technologies,” KONA Powder Particle, No. 20, 144–158 (2002).
F. Bernard and E. Gaffet, “Mechanical alloying in the SHS research,” Int. J. SHS, 10, No. 2, 109–132 (2001).
Ch. P. Pool and F. G. Owens, Introduction in Nanotechnology, John Wiley and Sons, Hoboken (2003).
A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies [in Russian], Fizmatlit, Moscow (2005).
F. Maglia, U. Anselmi-Tamburini, C. Deidda, et al., “Role of mechanical activation in SHS synthesis of TiC,” J. Mater. Sci., 39, 5227–5230 (2004).
F. Maglia, C. Milanese, and U. Anselmi-Tamburini, “Combustion synthesis of mechanically activated powders in the Nb-Si system,” J. Mater. Res., 17, No. 8, 1992–1999 (2002).
F. Maglia, C. Milanese, U. Anselmi-Tamburini, et al., “Combustion synthesis of mechanically activated powders in the Ta—Si system,” J. Alloys Compounds, 385, 269–275 (2004).
F. Maglia, U. Anselmi-Tamburini, C. Cocco, et al., “Combustion synthesis of mechanically activated powders in the Ti-Si system,” J. Mater. Res., 16, No. 4, 1074–1082 (2001).
Yang Yun, Lin Zhi-Ming, and Li Jiang-Tao, “Synthesis of SiC by silicon and carbon combustion in air,” J. Europ. Ceram. Soc., 29, 175–180 (2009).
M. A. Korchagin and N. Z. Lyakhov, “Self-propagating high-temperature synthesis in mechanically activated compositions,” Khim. Fiz., 27, No. 1, 73–78 (2008).
M. A. Korchagin and D. V. Dudina, “Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites,” Combust., Expl., Shock Waves, 43, No. 2, 176–187 (2007).
M. A. Korchagin, T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, “The effect of mechanical treatment on the rate and limits of combustion in SHS processes,” Int. J. SHS, 9, No. 3, 307–320 (2000).
N. F. Shkodich, N. A. Kochetov, A. S. Rogachev, et al., “Effect of mechanical activation on SHS compositions Ni-Al and Ti-Al,” Izv. Vyssh. Ucheb. Zaved., Tsvet. Metallurg., No. 5, 44–50 (2006).
M. Zakeri, R. Yazdani-Rad, M. H. Enayati, and M. R. Rahimipour, “Synthesis of nanocrystalline MoSi2 by mechanical alloying,” J. Alloys Compounds, 403, 258–261 (2005).
U. Anselmi-Tamburini, F. Maglia, S. Doppiu, et al., “Ignition mechanism of mechanically activated Me-Si (Me=Ti, Nb, Mo) mixtures,” J. Mater. Res., 19, No. 5, 1558–1566 (2005).
D. P. Riley, E. H. Kisi, and D. Phelan, “SHS of Ti3SiC2: ignition temperature depression by mechanical activation,” J. Europ. Ceram. Soc., 26, 1051–1058 (2006).
K. Yang, Y. Yang, Z.-M. Lin, et al., “Mechanicalactivation-assisted combustion synthesis of SiC powders with tetrapolifluoroethylene as promoter,” Mater. Res. Bull., 42, 1625–1632 (2007).
G. Liu, K. Yang, J. Li, et al., “Combustion synthesis of nanosized β-SiC powder on a large scale,” J. Phys. Chem. C, 112, 6285–6292 (2008).
Ch. Gras, N. Zink, F. Bernard, and E. Gaffet, “Assisted self-sustaining combustion reaction in the Fe-Si system: Mechanical and chemical activation,” Mater. Sci. Eng., A, 456, 270–277 (2007).
E. M. Heian, S. K. Khalsa, J. W. Lee, and Z. A. Munir, “Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion,” J. Amer. Ceram. Soc., 87, No. 5, 779–783 (2004).
G. Ji, D. Goran, F. Bernard, et al., “Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their influence on grain size characterization,” J. Alloys Compounds, 420, 158–164 (2006).
I. C. Atias Adrian, G. A. Ortigoza Villalba, F. A. Deorsola, and B. DeBenedetti, “Synthesis of Mg2Ni nanostructured by MASHS technique,” J. Alloys Compounds, 466, 205–207 (2008).
A. M. Locci, R. Orr`u, G. Cao, and Z. A. Munir, “Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC—TiB2 composites,” Mater. Sci. Eng., A, 434, 23–29 (2006).
G. Cabouro, S. Chevalier, E. Gaffet, et al., “Reactive sintering of molybdenum disilicide by spark plasma sinthering from mechanically activated powder mixtures: processing parameters and properties,” J. Alloys Compounds, 465, 344–355 (2008).
F. Neves, I. Martins, J. B. Correira, et al., “Reactive extrusion synthesis of mechanically activated Ti-50Ni powders,” Intermetallics, 15, 1623–1631 (2007).
B. S. B. Reddy, Das Karabi, Das Siddhartha, “A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical-thermal activation of chemical reactions,” J. Mater. Sci., 42, 9366–9378 (2007).
M. Schoenitz, T. Ward, and E. L. Dreizin, “Preparation of energetic metastable nano-composite materials by arrested reactive milling,” Mater. Res. Soc. Symp. Proc., 800, A2.6.1 (2004).
B. S. B. Reddy, K. Rajasekhar, M. Venu, et al., “Mechanical activation — assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al3O2) nanocomposites,” J. Alloys Compounds, 465, 97–105 (2008).
M. Schoenitz, T. S. Ward, and E. L. Dreizin, “Fully dense nano-composite energetic powders prepared by arrested reactive milling,” Proc. Combust. Inst., 30, 2071–2078 (2005).
S. M. Umbrajkar, M. Schoenitz, and E. L. Dreizin, “Control of structural refinement and composition in Al-MoO3 nanocomposites prepared by arrested reactive milling,” Propellants, Explos., Pyrotech., 31, No. 5, 382–389 (2006).
S. M. Umbrajkar, Seshadri, M. Schoenitz, et al., “Aluminum-rich Al-MoO3 nanocomposite powders prepared by arrested reactive milling,” J. Propul. Power, 24, No. 2, 192–198 (2008).
E. I. Maksimov, A. G. Merzhanov, and V. M. Shkiro, “On self-ignition of thermite compositions,” Zh. Fiz. Khim., 40, No. 2, 468–470 (1966).
H.-B. Jin, Y. Yang, Y.-X. Chen, et al., “Mechanochemical-activation-assisted combustion synthesis of α-Si3N4,” J. Amer. Ceram. Soc., 89, No. 3, 1099–1102 (2006).
Y.-X. Chen, J.-T. Li, and J.-S. Du, “Cost effective combustion synthesis of silicon nitride,” Mater. Res. Bull., 43, 1598–1606 (2008).
K. Aoyagi, T. Hiraki, R. Sivakumar, et al., “A new route to synthesize β-Si6−z AlzOzN8−z powders,” J. Alloys Compounds, 441, 236–240 (2007).
R. Sivakumar, K. Aoyagri, and T. Akiyama, “Effect of mechanically activated raw materials on β-sialon formation by combustion synthesis,” J. Mater. Res., 22, No. 10, 2863–2867 (2007).
G. Liu, K. Chen, H. Zhou, et al., “Mechanicalactivation assisted combustion synthesis of α-SiAlON in air,” Mater. Res. Bull., 42, 989–995 (2007).
V. I. Itin, O. G. Terekhova, N. G. Kasatskii, et al., “High-temperature synthesis of TiN with mechanical activation of titanium in nitrogen,” Neorg. Mater., 41, No. 11, 1315–1319 (2005).
J. M. Córdoba, M. D. Alcala, M. A. Avilés, M. J. Sayagués, and F. J. Gotor, “New production of TiCxN1−x-based cermets by one-step mechanically induced self-sustaining reaction: powder synthesis and pressureless sintering,” J. Europ. Ceram. Soc., 28, 2085–2098 (2008).
S. L. Birks and H. Friedman, “Particle size determination from x-ray line broadening,” J. Appl. Phys., 17, 687–692 (1946).
G. K. Williamson and W. H. Hall, “x-ray line broadening from filed aluminum and wolfram,” Acta Metallurg., 1, 22–31 (1953).
C. E. Wen, K. Kobayashi, A. Sugiyama, T. Nishio, and A. Matsumoto, “Synthesis of nanocrystallite by mechanical alloying and in situ observation of their combustion phase transformation in Al3Ti,” J. Mater. Sci., 35, 2099–2105 (2000).
Y. Shoshin, R. Mudryy, and E. Dreizin, “Preparation and characterization of energetic Al-Mg mechanical alloy powders,” Combust. Flame, 128, 259–269 (2002).
M. Schoenitz, E. Dreizin, and E. Shtessel, “Constant volume explosions of aerosols of metallic mechanical alloys and powder blends,” J. Propul. Power, 19, No. 3, 405–412 (2003).
Y. Shoshin and E. Dreizin, “Laminar lifted flame speed measurements for aerosols of metals and mechanical alloys,” AIAA J., 42, No. 7, 1416–1426 (2004).
M. Schoenitz, X. Zhu, and E. L. Dreizin, “Mechanical alloys in the Al-rich part of the Al-Ti binary system,” J. Metast. Nanocryst. Mater., 20–21, 455–461 (2004).
V. K. Smolyakov, “Combustion of mechanically activated heterogeneous systems,” Combust., Expl., Shock Waves, 41, No. 3, 319–325 (2005).
L. G. Abdulkarimova, T. A. Ketegenov, Z. A. Mansurov, et al., “Effect of phase transformation on nonisothermal synthesis in mechanically activated heterogeneous systems,” Combust., Expl., Shock Waves, 45, No. 1, 48–58 (2009).
A. S. Rogachev, N. A. Kochetov, V. V. Kurbatkina, et al., “Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed microvideorecording of the Ni + Al composition,” Combust., Expl., Shock Waves, 42, No. 4, 421–429 (2006).
A. S. Rogachev, “Waves of exothermal reactions in multilayer nanofilms,” Usp. Khim., 77, No. 1, 22–38 (2008).
T. W. Barbee and T. Weihs, “Ignitable heterogeneous stratified structure for the propagating of an internal exothermic chemical reaction along an expanding wavefront and method of making same,” U.S. Patent No. 5538795, July 23, 1996.
A. G. Merzhanov and A. S. Mukasyan, Solid-State Combustion [in Russian], Torus Press, Moscow (2007).
A. J. Gavens, D. Van Heerden, A. B. Mann, et al., “Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils,” J. Appl. Phys., 87, No. 3, 1255–1263 (2000).
A. S. Rogachev, A. E. Grigoryan, E. V. Illarionova, et al., “Gasless combustion of Ti-Al bimetallic multilayer nanofoils,” Combust., Expl., Shock Waves, 40, No. 2, 166–171 (2004).
Y. N. Picard, D. P. Adams, J. A. Palmer, and S. M. Yalisove, “Pulsed laser ignition of reactive multilayer films,” Appl. Phys. Lett., 88, 144102(1–3) (2006).
D. P. Adams, V. C. Hodges, M. M. Bai, et al., “Exothermic reactions in Co/Al nanolaminates,” J. Appl. Phys., 104, 043502(1–7) (2008).
L. A. Clevenger, C. V. Tompson, and K. N. Tu, “Explosive silicidation in nickel/amorphous-silicon multilayer thin films,” J. Appl. Phys., 67, No. 6, 2894–2898 (1990).
M. E. Reiss, C. M. Esber, D. Van Heerden, et al., “Selfpropagating formation reactions in Nb/Si multilayers,” Mater. Sci. Eng., A, 261, 217–222 (1999).
K. J. Blobaum, M. E. Reiss, J. M. Plitzko Lawrence, and T. P. Weihs, “Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry,” J. Appl. Phys., 94, No. 5, 2915–2922 (2003).
A. S. Shteinberg, V. A. Shcherbakov, and Z. A. Munir, “Kinetics of combustion in the layered Ni-Al system,” Combust. Sci. Technol., 169, 1–24 (2001).
E. Ma, C. V. Tompson, L. A. Clevenger, and K. N. Tu, “Self-propagating explosive reactions in Al/Ni multilayer thin films,” Appl. Phys. Lett., 57, No. 12, 1262–1264 (1990).
T. S. Dyer and Z. A. Munir, “The synthesis of nickel aluminides by multilayer self-propagating combustion,” Metallurg. Mater. Trans., B, 26, No. 3, 603–610 (1995).
V. A. Shcherbakov, A. S. Shteinberg, and Z. A. Munir, “Formation of the final product during combustion of the Ni-Al layered system,” Dokl. Ross. Akad. Nauk, 364, No. 5, 647–652 (1999).
A. S. Shteinberg and V. A. Knyazik, “Macrokinetics of high-temperature heterogeneous reactions: SHS aspects,” Pure Appl. Chem., 64, 965–976 (1992).
A. S. Shteinberg and V. A. Knyazik, “Electrocombustion,” in: Proc. Zel’dovich Memorial: Combustion, Detonation, Shock Waves, September 12–17 (1995), pp. 358–372.
X. Qiu and J. Wang, “Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils,” Scripta Mater., 56, 1055–1058 (2007).
A. G. Merzhanov, E. B. Pis’menskaya, V. I. Ponomarev, and A. S. Rogachev, “Dynamic x-ray photography of phase transformations during synthesis of intermetallides in the thermal explosion mode,” Dokl. Ross. Akad. Nauk, 363, No. 2, 203–207 (1998).
D. P. Adams, M. A. Rodrigues, C. P. Tigges, and P. G. Kotula, “Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films,” J. Mater. Res., 21, 3168–3179 (2006).
E. Ma, “Growth of amorphous silicide during Ti/Si interfacial reactions in multilayer thin films,” Mater. Sci. Eng. A., 398, 60–65 (2005).
V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds [in Russian], Izd. Tomsk. Univ., Tomsk (1989).
T. Lehnert, S. Tixier, P. Böni, and R. Gotthardt, “A new fabrication process for Ni-Ti shape memory thin films,” Mater. Sci. Eng., A273–275, 713–716 (1999).
M. A. Ponomarev, V. A. Shcherbakov, and A. S. Shteinberg, “Specific features of combustion of thin layers of the titanium-boron powder mixture,” Dokl. Ross. Akad. Nauk, 340, No. 5, 642–645 (1995).
S. T. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “Solid-flame combustion of thin films,” Dokl. Ross. Akad. Nauk, 408, No. 2, 211–213 (2006).
S. G. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “SHS in thin films. Possibilities of engineering applications,” Izv. Vyssh. Ucheb. Zaved., Tsvet. Metallurg., No. 5, 36–43 (2006).
A. P. Aldushin and B. I. Khaikin, “Combustion of mixtures forming condensed reaction products,” Fiz. Goreniya Vzryva, 10, No. 3, 313–323 (1974).
A. P. Hard and P. V. Phung, “Propagation of gasless reactions in solids. 1. Analytical study of exothermic intermetallic reaction rates,” Combust. Flame, 21, No. 1, 77–89 (1973).
R. Armstrong, “Models for gasless combustion in layered materials and random media,” Combust. Sci. Technol., 71, 155–174 (1990).
R. Armstrong and M. Koszykowski, in: Z. A. Munir and J. B. Holt (eds.), Combustion and Plasma Synthesis of High-Temperature Materials, VCY, New York (1990), p. 88.
R. Armstrong, “Theoretical models for the combustion of alloyable materials,” Metallurg. Trans., A, 23, No. 9, 2339–2347 (1992).
A. B. Mann, A. J. Gavens, M. E. Reiss, et al., “Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils,” J. Appl. Phys., 82, No. 3, 1178–1188 (1997).
E. Ma, C. V. Thompson, and L. A. Clevenger, “Nucleation and growth during reactions in multilayer AI/Ni films: The early stage of Al, Ni formation,” J. Appl. Phys., 69, No. 4, 2211–2218 (1991).
S. Jayaraman, O. M. Knio, A. B. Mann, and T. P. Weihs, “Numerical predictions of oscillatory combustion in reactive multilayers,” J. Appl. Phys., 86, No. 2, 800–809 (1999).
J. C. Trenkle, J. Wang, T. P. Weihs, and T. C. Hufnagel, “Microstructural study of an oscillatory formation reaction in nanostructured reactive multilayer foils,” Appl. Phys. Lett., 87, 153108(1–3) (2005).
A. S. Rogachev, N. A. Kochetov, I. Yu. Yagubova, et al., “Some features of SHS-process in the multilayer Ti/Al foils,” Int. J. SHS, 13, No. 4, 285–291 (2004).
S. Jayaraman, A. B. Mann, M. Reiss, et al., “Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils,” Combust. Flame, 124, 178–194 (2001).
E. Besnoin, S. Cerutti, O. M. Knio, and T. P. Weihs, “Effect of reactant and product melting on selfpropagating reactions in multilayer foils,” J. Appl. Phys., 92, No. 9, 5474–5481 (2002).
A. Makino, “Heterogeneous flame propagation in the self-propagating high-temperature synthesis (SHS) process in multi-layer foils for three components system: Theory and experimental comparison,” Proc. Combust. Inst., 31, 1813–1820 (2007).
K. J. Blobaum, D. Van Heerden, A. J. Gavens, and T. P. Weihs, “Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation,” Acta Mater., 51, 3871–3884 (2003).
J.-C. Gachon, A. S. Rogachev, H. E. Grigoryan, et al., “On the mechanism of heterogeneous reaction and phase formation in the Ti/Al multilayer nanofilms,” Acta Mater., 53, 1225–1231 (2005).