Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features
Tài liệu tham khảo
Brown, 1886, On an acetic ferment which forms cellulose, Journal of the Chemical Society, Transactions, 49, 432, 10.1039/CT8864900432
Castro, 2011, Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohydrate Polymers, 84, 96, 10.1016/j.carbpol.2010.10.072
Chang, 2016, Physical properties of bacterial cellulose composites for wound dressings, Food Hydrocolloids, 53, 75, 10.1016/j.foodhyd.2014.12.009
Charreau, 2013, Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose, Recent Patents on Nanotechnology, 7, 56, 10.2174/187221013804484854
Corrêa, 2010, Cellulose nanofibers from curauá fibers, Cellulose, 17, 1183, 10.1007/s10570-010-9453-3
Czaja, 2006, Microbial cellulose: The natural power to heal wounds, Biomaterials, 27, 145, 10.1016/j.biomaterials.2005.07.035
da Silva Braid, A. C. C., de Figueirêdo, M. C. B., Matsuura, M. I. F., de Souza Filho, M. S. M., Rosa, M. F., (2015). Avaliação ambiental de nanocristais de celulose obtidos a partir de biomassa vegetal. Fortaleza: Embrapa Agroindústria Tropical – Boletim de Pesquisa e Desenvolvimento, ISSN: 1679-6543, 98, 1–30.
de figueirêdo, 2012, Life cycle assessment of cellulose nanowhiskers, Journal of Cleaner Production, 35, 130, 10.1016/j.jclepro.2012.05.033
do Nascimento, D. M., Dias, A. F., de Araújo Junior, C. P., Rosa, M. F., Morais, J. P. S., de FIGUEIRÊDO, M. C. B., (2016). A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: Environmental assessment of technological pathways. Industrial Crops and Products. in press, 10.1016/j.indcrop.2016.02.063.
Dufresne, 2012
Gea, 2011, Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process, Bioresource Technology, 102, 9105, 10.1016/j.biortech.2011.04.077
George, 2005, Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties, International Journal of Biological Macromolecules, 37, 189, 10.1016/j.ijbiomac.2005.10.007
George, 2011, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites, International Journal of Biological Macromolecules, 48, 50, 10.1016/j.ijbiomac.2010.09.013
Guo, 2012, Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus, Carbohydrate Polymers, 87, 1026, 10.1016/j.carbpol.2011.07.060
Henrique, 2015, Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and cellulose II, extracted from different sources and using different types of acids, Industrial Crops and Products, 76, 128, 10.1016/j.indcrop.2015.06.048
Hu, 2014, Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering, Journal Material Research, 29, 2682, 10.1557/jmr.2014.315
Klemm, 2001, Bacterial synthesized cellulose – Artificial blood vessels for microsurgery, Progress in Polymer Science, 26, 1561, 10.1016/S0079-6700(01)00021-1
Lai, 2013, TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system, Colloid and Polymer Science, 291, 2985, 10.1007/s00396-013-3033-7
Lu, 2010, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network, Carbohydrate Polymers, 82, 329, 10.1016/j.carbpol.2010.04.073
Martínez-Sanz, 2011, Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers, Carbohydrate Polymers, 85, 228, 10.1016/j.carbpol.2011.02.021
Mirhosseini, 2008, Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 47, 10.1016/j.colsurfa.2007.07.007
Mohammadkazemi, 2015, Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites, Construction and Building Materials, 101, 958, 10.1016/j.conbuildmat.2015.10.093
Morais, 2013, Extraction and characterization of nanocellulose structures from raw cotton linter, Carbohydrate Polymers, 91, 229, 10.1016/j.carbpol.2012.08.010
Moreira, 2009, BC nanofibres: In vitro study of genotoxicity and cell proliferation, Toxicology Letters, 189, 235, 10.1016/j.toxlet.2009.06.849
Moriana, 2016, Cellulose nanocrystals from forest residues as reinforcing agents for composites: A study from macro- to nano-dimensions, Carbohydrate Polymers, 139, 139, 10.1016/j.carbpol.2015.12.020
Nagalakshmaiah, 2016, Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex, Carbohydrate Polymers, 136, 945, 10.1016/j.carbpol.2015.09.096
Ng, 2015, Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers, Composites Part B: Engineering, 75, 176, 10.1016/j.compositesb.2015.01.008
Pecoraro, 2008
Pereira, 2014, Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems, Carbohydrate Polymers, 112, 165, 10.1016/j.carbpol.2014.05.090
Qiao, 2016, Structure and rheological properties of cellulose nanocrystals suspension, Food Hydrocolloids, 55, 19, 10.1016/j.foodhyd.2015.11.005
Qui, 2013, Smart materials based on cellulose: A review of the preparations, properties, and applications, Materials, 6, 738, 10.3390/ma6030738
Rani, 2011, Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp, Journal of Applied Polymer Science, 120, 2835, 10.1002/app.33307
Roman, 2004, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules, 5, 1671, 10.1021/bm034519+
Rosa, 2010, Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior, Carbohydrate Polymers, 81, 83, 10.1016/j.carbpol.2010.01.059
Ross, 1991, Cellulose biosynthesis and function in bacteria, Microbiology Reviews, 55, 35, 10.1128/MMBR.55.1.35-58.1991
Segal, 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Textile Research Journal, 29, 786, 10.1177/004051755902901003
Shah, 2013, Overview of bacterial cellulose composites: A multipurpose advanced material, Carbohydrate Polymers, 98, 1585, 10.1016/j.carbpol.2013.08.018
Svensson, 2005, Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials, 26, 419, 10.1016/j.biomaterials.2004.02.049
Yun, 2010, Flow-induced liquid crystalline solutions prepared from aspect ratio-controlled bacterial cellulose nanowhiskers, Molecular Crystals and Liquid Crystals, 519, 141, 10.1080/15421401003609897