HPC simulations of alkali-silica reaction-induced damage: Influence of alkali-silica gel properties
Tài liệu tham khảo
Rajabipour, 2015, Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res., 76, 130, 10.1016/j.cemconres.2015.05.024
Capra, 1998, Modeling of induced mechanical effects of alkali-aggregate reactions, Cem. Concr. Res., 28, 251, 10.1016/S0008-8846(97)00261-5
Saouma, 2006, Constitutive model for alkali-aggregate reactions, ACI Mater. J., 103, 194
Baghdadi, 2008
Martin, 2012, Modelling of concrete structures affected by internal swelling reactions: couplings between transfer properties, alkali leachning and expansion
Capra, 2003, Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations, Mech. Mater., 35, 817, 10.1016/S0167-6636(02)00209-0
Bangert, 2004, Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction, Int. J. Numer. Anal. Methods Geomech., 28, 689, 10.1002/nag.375
Comi, 2009, A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction, Mech. Mater., 41, 210, 10.1016/j.mechmat.2008.10.010
Grimal, 2010, Concrete modelling for expertise of structures affected by alkali aggregate reaction, Cem. Concr. Res., 40, 502, 10.1016/j.cemconres.2009.09.007
Comi, 2012, Two-phase damage modeling of concrete affected by alkali-silica reaction under variable temperature and humidity conditions, Int. J. Solids Struct., 49, 3367, 10.1016/j.ijsolstr.2012.07.015
Pignatelli, 2013, A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction, Cem. Concr. Res., 53, 196, 10.1016/j.cemconres.2013.06.011
Multon, 2016, Multi-scale analysis of alkali-silica reaction (ASR): impact of alkali leaching on scale effects affecting expansion tests, Cem. Concr. Res., 81, 122, 10.1016/j.cemconres.2015.12.007
Esposito, 2016, A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete, Cem. Concr. Compos., 70, 139, 10.1016/j.cemconcomp.2016.03.017
Bažant, 2000, Mathematical model for kinetics of alkali-silica reaction in concrete, Cem. Concr. Res., 30, 419, 10.1016/S0008-8846(99)00270-7
Bažant, 2000, Fracture Mechanics of ASR in concretes with waste glass particles of different sizes, J. Eng. Mech., 126, 226, 10.1061/(ASCE)0733-9399(2000)126:3(226)
Suwito, 2002, A mathematical model for the pessimum size effect of ASR in concrete, Concr. Sci. Eng., 4, 23
Comby-Peyrot, 2006
Comby-Peyrot, 2009, Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction, Comput. Mater. Sci., 46, 1163, 10.1016/j.commatsci.2009.06.002
Multon, 2009, Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion, Cem. Concr. Res., 39, 490, 10.1016/j.cemconres.2009.03.007
Charpin, 2012, A computational linear elastic fracture mechanics-based model for alkali-silica reaction, Cem. Concr. Res., 42, 613, 10.1016/j.cemconres.2012.01.004
Alnaggar, 2013, Lattice discrete particle modeling (LDPM) of alkali silica reaction (ASR) deterioration of concrete structures, Cem. Concr. Compos., 41, 45, 10.1016/j.cemconcomp.2013.04.015
Puatatsananon, 2013, Chemo-mechanical micromodel for alkali-silica reaction, ACI Mater. J., 110, 67
Charpin, 2014, Microporomechanics study of anisotropy of ASR under loading, Cem. Concr. Res., 63, 143, 10.1016/j.cemconres.2014.05.009
Çopuroğlu, 2007, Modelling of effect of ASR on concrete microstructure, Key Eng. Mater., 348–349, 809, 10.4028/www.scientific.net/KEM.348-349.809
Schlangen, 2007, Concrete damage due to alkali-silica reaction: a new method to determine the properties of the expansive gel, 17
Dunant, 2009
Dunant, 2010, Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework, Cem. Concr. Res., 40, 517, 10.1016/j.cemconres.2009.07.024
Giorla, 2013
Giorla, 2015, Influence of visco-elasticity on the stress development induced by alkali-silica reaction, Cem. Concr. Res., 70, 1, 10.1016/j.cemconres.2014.09.006
Richart, 2015, Implementation of a parallel finite-element library: test case on a non-local continuum damage model, Finite Elem. Anal. Des., 100, 41, 10.1016/j.finel.2015.02.003
Ben Haha, 2007, Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis, Cem. Concr. Res., 37, 1206, 10.1016/j.cemconres.2007.04.016
Soghrati, 2012, An interface-enriched generalized FEM for problems with discontinuous gradient fields, Int. J. Numer. Methods Eng., 89, 991, 10.1002/nme.3273
Soghrati, 2012, A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries, Comput. Methods Appl. Mech. Eng., 217–220, 46, 10.1016/j.cma.2011.12.010
Lagier, 2011, Numerical strategies for prediction of drying cracks in heterogeneous materials: comparison upon experimental results, Eng. Struct., 33, 920, 10.1016/j.engstruct.2010.12.013
Rots, 2001, Sequentially linear continuum model for concrete fracture, vol. 2
Rots, 2004, Regularized sequentially linear saw-tooth softening model, Int. J. Numer. Anal. Methods Geomech., 28, 821, 10.1002/nag.371
DeJong, 2008, Sequentially linear analysis of fracture under non-proportional loading, Eng. Fract. Mech., 75, 5042, 10.1016/j.engfracmech.2008.07.003
Rots, 2008, Robust modeling of RC structures with an “event-by-event strategy”, Eng. Fract. Mech., 75, 590, 10.1016/j.engfracmech.2007.03.027
Dunant, 2015, Algorithmically imposed thermodynamic compliance for material models in mechanical simulations using the AIM method, Int. J. Numer. Methods Eng., 104, 963, 10.1002/nme.4969
Pellegrini, 2008
Project, 2016
Computational Solid Mechanics Laboratory at Ecole Polytechnique Fédérale de Lausanne, Akantu User's Guide, 2nd Edition (2016).
Balay, 2016
Wriggers, 2006, Mesoscale models for concrete: homogenisation and damage behaviour, Finite Elem. Anal. Des., 42, 623, 10.1016/j.finel.2005.11.008
Geuzaine, 2009, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309, 10.1002/nme.2579
Dunant, 2012, Effects of aggregate size on alkali-silica-reaction induced expansion, Cem. Concr. Res., 42, 745, 10.1016/j.cemconres.2012.02.012
Ben Haha, 2006
Xu, 2009, Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar, Int. J. Fract., 157, 33, 10.1007/s10704-009-9315-x
Leemann, 2013, E-modulus of the alkali-silica-reaction product determined by micro-indentation, Constr. Build. Mater., 44, 221, 10.1016/j.conbuildmat.2013.03.018
Moon, 2013, Determination of the elastic properties of amorphous materials: case study of alkali-silica reaction gel, Cem. Concr. Res., 54, 55, 10.1016/j.cemconres.2013.08.012
Garcia-Diaz, 2006, Mechanism of damage for the alkali-silica reaction, Cem. Concr. Res., 36, 395, 10.1016/j.cemconres.2005.06.003
Struble, 1981, Unstable swelling behavior of alkali silica gels, Cem. Concr. Res., 11, 611, 10.1016/0008-8846(81)90091-0
Dunant, 2016
Dunant, 2012, Effects of uniaxial stress on alkali-silica reaction induced expansion of concrete, Cem. Concr. Res., 42, 567, 10.1016/j.cemconres.2011.12.004
Wang, 2016, Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete, Int. J. Solids Struct., 80, 310, 10.1016/j.ijsolstr.2015.11.018
Wang, 2015, Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build. Mater., 75, 35-35, 10.1016/j.conbuildmat.2014.09.069
Urhan, 1987, Alkali silica and pozzolanic reactions in concrete. Part 1: interpretation of published results and an hypothesis concerning the mechanism, Cem. Concr. Res., 17, 141, 10.1016/0008-8846(87)90068-8
Bleszynski, 1998, Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions, Adv. Cem. Based Mater., 7, 66, 10.1016/S1065-7355(97)00030-8
Gholizadeh Vayghan, 2016, The composition-rheology relationships in alkali-silica reaction gels and the impact on the gels' deleterious behavior, Cem. Concr. Res., 83, 45, 10.1016/j.cemconres.2016.01.011
Geers, 2010, Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 2175, 10.1016/j.cam.2009.08.077