HPC simulations of alkali-silica reaction-induced damage: Influence of alkali-silica gel properties

Cement and Concrete Research - Tập 109 - Trang 90-102 - 2018
Aurelia I. Cuba Ramos1, Clément Roux-Langlois2, Cyrille F. Dunant3, Mauro Corrado4, Jean-François Molinari1
1Civil Engineering Institute, Materials Science and Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 18, Lausanne CH-1015, Switzerland
2Glass and Mechanics Department, Institute of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
3Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
4Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy

Tài liệu tham khảo

Rajabipour, 2015, Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res., 76, 130, 10.1016/j.cemconres.2015.05.024 Capra, 1998, Modeling of induced mechanical effects of alkali-aggregate reactions, Cem. Concr. Res., 28, 251, 10.1016/S0008-8846(97)00261-5 Saouma, 2006, Constitutive model for alkali-aggregate reactions, ACI Mater. J., 103, 194 Baghdadi, 2008 Martin, 2012, Modelling of concrete structures affected by internal swelling reactions: couplings between transfer properties, alkali leachning and expansion Capra, 2003, Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations, Mech. Mater., 35, 817, 10.1016/S0167-6636(02)00209-0 Bangert, 2004, Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction, Int. J. Numer. Anal. Methods Geomech., 28, 689, 10.1002/nag.375 Comi, 2009, A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction, Mech. Mater., 41, 210, 10.1016/j.mechmat.2008.10.010 Grimal, 2010, Concrete modelling for expertise of structures affected by alkali aggregate reaction, Cem. Concr. Res., 40, 502, 10.1016/j.cemconres.2009.09.007 Comi, 2012, Two-phase damage modeling of concrete affected by alkali-silica reaction under variable temperature and humidity conditions, Int. J. Solids Struct., 49, 3367, 10.1016/j.ijsolstr.2012.07.015 Pignatelli, 2013, A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction, Cem. Concr. Res., 53, 196, 10.1016/j.cemconres.2013.06.011 Multon, 2016, Multi-scale analysis of alkali-silica reaction (ASR): impact of alkali leaching on scale effects affecting expansion tests, Cem. Concr. Res., 81, 122, 10.1016/j.cemconres.2015.12.007 Esposito, 2016, A multiscale micromechanical approach to model the deteriorating impact of alkali-silica reaction on concrete, Cem. Concr. Compos., 70, 139, 10.1016/j.cemconcomp.2016.03.017 Bažant, 2000, Mathematical model for kinetics of alkali-silica reaction in concrete, Cem. Concr. Res., 30, 419, 10.1016/S0008-8846(99)00270-7 Bažant, 2000, Fracture Mechanics of ASR in concretes with waste glass particles of different sizes, J. Eng. Mech., 126, 226, 10.1061/(ASCE)0733-9399(2000)126:3(226) Suwito, 2002, A mathematical model for the pessimum size effect of ASR in concrete, Concr. Sci. Eng., 4, 23 Comby-Peyrot, 2006 Comby-Peyrot, 2009, Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction, Comput. Mater. Sci., 46, 1163, 10.1016/j.commatsci.2009.06.002 Multon, 2009, Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion, Cem. Concr. Res., 39, 490, 10.1016/j.cemconres.2009.03.007 Charpin, 2012, A computational linear elastic fracture mechanics-based model for alkali-silica reaction, Cem. Concr. Res., 42, 613, 10.1016/j.cemconres.2012.01.004 Alnaggar, 2013, Lattice discrete particle modeling (LDPM) of alkali silica reaction (ASR) deterioration of concrete structures, Cem. Concr. Compos., 41, 45, 10.1016/j.cemconcomp.2013.04.015 Puatatsananon, 2013, Chemo-mechanical micromodel for alkali-silica reaction, ACI Mater. J., 110, 67 Charpin, 2014, Microporomechanics study of anisotropy of ASR under loading, Cem. Concr. Res., 63, 143, 10.1016/j.cemconres.2014.05.009 Çopuroğlu, 2007, Modelling of effect of ASR on concrete microstructure, Key Eng. Mater., 348–349, 809, 10.4028/www.scientific.net/KEM.348-349.809 Schlangen, 2007, Concrete damage due to alkali-silica reaction: a new method to determine the properties of the expansive gel, 17 Dunant, 2009 Dunant, 2010, Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework, Cem. Concr. Res., 40, 517, 10.1016/j.cemconres.2009.07.024 Giorla, 2013 Giorla, 2015, Influence of visco-elasticity on the stress development induced by alkali-silica reaction, Cem. Concr. Res., 70, 1, 10.1016/j.cemconres.2014.09.006 Richart, 2015, Implementation of a parallel finite-element library: test case on a non-local continuum damage model, Finite Elem. Anal. Des., 100, 41, 10.1016/j.finel.2015.02.003 Ben Haha, 2007, Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis, Cem. Concr. Res., 37, 1206, 10.1016/j.cemconres.2007.04.016 Soghrati, 2012, An interface-enriched generalized FEM for problems with discontinuous gradient fields, Int. J. Numer. Methods Eng., 89, 991, 10.1002/nme.3273 Soghrati, 2012, A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries, Comput. Methods Appl. Mech. Eng., 217–220, 46, 10.1016/j.cma.2011.12.010 Lagier, 2011, Numerical strategies for prediction of drying cracks in heterogeneous materials: comparison upon experimental results, Eng. Struct., 33, 920, 10.1016/j.engstruct.2010.12.013 Rots, 2001, Sequentially linear continuum model for concrete fracture, vol. 2 Rots, 2004, Regularized sequentially linear saw-tooth softening model, Int. J. Numer. Anal. Methods Geomech., 28, 821, 10.1002/nag.371 DeJong, 2008, Sequentially linear analysis of fracture under non-proportional loading, Eng. Fract. Mech., 75, 5042, 10.1016/j.engfracmech.2008.07.003 Rots, 2008, Robust modeling of RC structures with an “event-by-event strategy”, Eng. Fract. Mech., 75, 590, 10.1016/j.engfracmech.2007.03.027 Dunant, 2015, Algorithmically imposed thermodynamic compliance for material models in mechanical simulations using the AIM method, Int. J. Numer. Methods Eng., 104, 963, 10.1002/nme.4969 Pellegrini, 2008 Project, 2016 Computational Solid Mechanics Laboratory at Ecole Polytechnique Fédérale de Lausanne, Akantu User's Guide, 2nd Edition (2016). Balay, 2016 Wriggers, 2006, Mesoscale models for concrete: homogenisation and damage behaviour, Finite Elem. Anal. Des., 42, 623, 10.1016/j.finel.2005.11.008 Geuzaine, 2009, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309, 10.1002/nme.2579 Dunant, 2012, Effects of aggregate size on alkali-silica-reaction induced expansion, Cem. Concr. Res., 42, 745, 10.1016/j.cemconres.2012.02.012 Ben Haha, 2006 Xu, 2009, Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar, Int. J. Fract., 157, 33, 10.1007/s10704-009-9315-x Leemann, 2013, E-modulus of the alkali-silica-reaction product determined by micro-indentation, Constr. Build. Mater., 44, 221, 10.1016/j.conbuildmat.2013.03.018 Moon, 2013, Determination of the elastic properties of amorphous materials: case study of alkali-silica reaction gel, Cem. Concr. Res., 54, 55, 10.1016/j.cemconres.2013.08.012 Garcia-Diaz, 2006, Mechanism of damage for the alkali-silica reaction, Cem. Concr. Res., 36, 395, 10.1016/j.cemconres.2005.06.003 Struble, 1981, Unstable swelling behavior of alkali silica gels, Cem. Concr. Res., 11, 611, 10.1016/0008-8846(81)90091-0 Dunant, 2016 Dunant, 2012, Effects of uniaxial stress on alkali-silica reaction induced expansion of concrete, Cem. Concr. Res., 42, 567, 10.1016/j.cemconres.2011.12.004 Wang, 2016, Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete, Int. J. Solids Struct., 80, 310, 10.1016/j.ijsolstr.2015.11.018 Wang, 2015, Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build. Mater., 75, 35-35, 10.1016/j.conbuildmat.2014.09.069 Urhan, 1987, Alkali silica and pozzolanic reactions in concrete. Part 1: interpretation of published results and an hypothesis concerning the mechanism, Cem. Concr. Res., 17, 141, 10.1016/0008-8846(87)90068-8 Bleszynski, 1998, Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions, Adv. Cem. Based Mater., 7, 66, 10.1016/S1065-7355(97)00030-8 Gholizadeh Vayghan, 2016, The composition-rheology relationships in alkali-silica reaction gels and the impact on the gels' deleterious behavior, Cem. Concr. Res., 83, 45, 10.1016/j.cemconres.2016.01.011 Geers, 2010, Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 2175, 10.1016/j.cam.2009.08.077