Fostering mica exfoliation through biaxial straining strategy with monovalent cation substitution

FlatChem - Tập 42 - Trang 100565 - 2023
Shunnian Wu1, P.Vishakha.T. Weerasinghe1, Ping Wu1
1Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore

Tài liệu tham khảo

Kim, 2023, Layer-dependent stability of 2D mica nanosheets, Sci. Rep., 13 Castellanos-Gomez, 2012, Mechanical properties of freely suspended atomically thin dielectric layers of mica, Nano Res., 5, 550, 10.1007/s12274-012-0240-3 Ying, 2019, Laminated mica nanosheets supported ionic liquid membrane for CO2 separation, Nanotechnology, 30, 6, 10.1088/1361-6528/ab2b10 P. V. T. Weerasinghe et al., Efficient synthesis of 2D mica nanosheets by solvothermal and microwave-assisted techniques for CO2 capture applications, Materials, vol. 16, no. 7, p. 2921, 2023. Ding, 2020, Superior to graphene: super-anticorrosive natural mica nanosheets, Nanoscale, 12, 16253, 10.1039/D0NR05040G Jia, 2015, Preparation of monolayer muscovite through exfoliation of natural muscovite, RSC Adv., 5, 52882, 10.1039/C5RA07749D Kirubanithy, 2018, Magnetic vortex state in a layered muscovite sheet silicate single crystal, Mater. Res. Express, 5, 10, 10.1088/2053-1591/aad509 Park, 2019, Characterization of luminescence properties of exfoliated mica via sonication technique, Chem. Phys., 522, 238, 10.1016/j.chemphys.2019.03.016 Van Khai, 2013, Synthesis and characterization of single- and few-layer mica nanosheets by the microwave-assisted solvothermal approach, Nanotechnology, 24, 145602, 10.1088/0957-4484/24/14/145602 Kim, 2015, Tunable bandgap narrowing induced by controlled molecular thickness in 2D mica nanosheets, Chem. Mater., 27, 4222, 10.1021/cm504802j Jia, 2017, Correlation of natural muscovite exfoliation with interlayer and solvation forces, RSC Adv., 7, 1082, 10.1039/C6RA26560J Pan, 2018, Transforming ground mica into high-performance biomimetic polymeric mica film, Nat. Commun., 9, 10.1038/s41467-018-05355-6 Wang, 2014, Titanium oxide nanosheets: Graphene analogues with versatile functionalities, Chem. Rev., 114, 9455, 10.1021/cr400627u Lee, 2023, Breaking new ground in mica exfoliation: Harnessing biaxial straining principles through H2 and N2 intercalation for enhanced layer separation, Materials Today Advances, 19, 10.1016/j.mtadv.2023.100406 Tan, 2022, Modeling stress-strain nonlinear mechanics via entropy changes on surface wetting using the Born-Oppenheimer approximation, Results in Engineering, 13, 10.1016/j.rineng.2022.100349 Wu, 2023, Entropy-driven liquid-phase exfoliation of non-Van-Der-Waals crystals into nanoplatelets, FlatChem, 41, 10.1016/j.flatc.2023.100540 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, 6, 15, 10.1016/0927-0256(96)00008-0 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (in English), J. Chem. Phys., Article vol. 132, no. 15, p. 19, Apr 2010, Art no. 154104, doi: 10.1063/1.3382344. Monkhorst, 1976, Special points for brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Wu, 2022, Origin of observed narrow bandgap of mica nanosheets, Sci. Rep., 12, 2868, 10.1038/s41598-022-06820-5 Sakuma, 2013, Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions, J. Geophys. Res. Solid Earth, 118, 6066, 10.1002/2013JB010550 Wu, 2023, Energetic and configurational mechanisms to facilitate mica nanosheets synthesis by organo-ammonium cation intercalation, Comput. Mater. Sci, 224, 10.1016/j.commatsci.2023.112162 M. Yu and D. R. Trinkle, Accurate and efficient algorithm for Bader charge integration, J. Chem. Phys., vol. 134, no. 6, Feb 2011, Art no. 064111, doi: 10.1063/1.3553716. Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter, 21, 084204, 10.1088/0953-8984/21/8/084204 Comodi, 1995, High-pressure structural study of muscovite, Phys. Chem. Miner., 22, 170, 10.1007/BF00202297 Vaughan, 1986, Elasticity of muscovite and its relationship to crystal-structure, J. Geophys. Res. Solid Earth, 91, 4657, 10.1029/JB091iB05p04657 Brigatti, 1998, Crystal chemistry of Mg-, Fe-bearing muscovites-2M1, Am. Mineral., 83, 775, 10.2138/am-1998-7-809 Liang, 1998, Triclinic muscovite; X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy, Can. Mineral., 36, 1017 Osman, 1999, Alkali metals ion exchange on muscovite mica (in eng), J. Colloid Interface Sci., 209, 232, 10.1006/jcis.1998.5878 Bowers, 2008, Cation exchange at the mineral−water interface: H3O+/K+ competition at the surface of nano-muscovite, Langmuir, 24, 10240, 10.1021/la8021112 Huang, 2005, Minerals, Primary, 500 Yu, 2016, First-principles study of organically modified muscovite mica with ammonium (NH4+) or methylammonium (CH3NH3+) ion, J. Mater. Sci., 51, 10806, 10.1007/s10853-016-0292-y Adapa, 2021, Role of cation size on swelling pressure and free energy of mica pores, (in English), J. Colloid Interface Sci., Article, 599, 694, 10.1016/j.jcis.2021.04.034 Adapa, 2022, Cation hydration by confined water and framework-atoms have crucial role on thermodynamics of clay swelling, Sci. Rep., 12, 17810, 10.1038/s41598-022-21349-3 White, 1956, Layer charge and interlamellar expansion in a muscovite, Clays Clay Miner., 5, 289, 10.1346/CCMN.1956.0050124 Jia, 2015, Can natural muscovite be expanded?, Colloids Surf A Physicochem Eng Asp, 471, 19, 10.1016/j.colsurfa.2015.02.009 Pavón, 2014, Interaction of hydrated cations with mica-n (n = 2, 3 and 4) surface, J. Phys. Chem. C, 118, 2115, 10.1021/jp4110695 Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751, 10.1107/S0567739476001551 Allred, 1961, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5 Vatti, 2016 Q. S. Zheng, Y. M. Zhang, T. Liu, J. Huang, N. N. Xue, and Q. H. Shi, Optimal location of vanadium in muscovite and its geometrical and electronic properties by DFT calculation, Minerals, vol. 7, no. 3, Mar 2017, Art no. 32, doi: 10.3390/min7030032. Kaur, 2013, Oxygen ion-induced modifications of optical properties of natural muscovite mica, (in English), Radiat Eff. Defects Solids, Article; Proceedings Paper, 168, 587, 10.1080/10420150.2013.771357 Kalita, 2016, Estimation of band gap of muscovite mineral using thermoluminescence (TL) analysis, Physica B Condens. Matter, 485, 53, 10.1016/j.physb.2016.01.009 Davidson, 1972, The optical properties of mica in the vacuum ultraviolet, J. Phys. C Solid State Phys., 5, 879, 10.1088/0022-3719/5/8/014 M. Schlüter and L. J. Sham, “Density-functional theory of the band gap,” in Advances in quantum chemistry, vol. 21, P.-O. Löwdin Ed.: Academic Press, 1990, pp. 97-112. Zhang, 2022, Interactions between typical functional groups of soil organic matter and mica (001) surface: A DFT study, Appl. Clay Sci., 216, 10.1016/j.clay.2021.106374 Osman, 2000, Determination of the cation-exchange capacity of muscovite mica, J. Colloid Interface Sci., 224, 112, 10.1006/jcis.1999.6677 Zhao, 2005, Cleaving of muscovite powder by molten lithium nitrate, Colloid Polym. Sci., 283, 699, 10.1007/s00396-004-1245-6 Sakuma, 2011, H3O+-exchanged muscovite surfaces: A molecular dynamics study,, Geochim. Cosmochim. Acta, 75, 63, 10.1016/j.gca.2010.10.007 Sasaki, 1995, Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure, Chem. Mater., 7, 1001, 10.1021/cm00053a029 Ma, 2015, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc. Chem. Res., 48, 136, 10.1021/ar500311w Bae, 2019, Atomically thin, large area aluminosilicate nanosheets fabricated from layered clay minerals, Mater. Chem. Phys., 221, 168, 10.1016/j.matchemphys.2018.09.040 Kimball, 2002, Entropy, elastic strain, and the second law of thermodynamics; the principles of least work and maximum probability, J. Phys. Chem., 35, 611, 10.1021/j150320a019 Inglesfield, 1982, Surface electronic structure, Rep. Prog. Phys., 45, 223, 10.1088/0034-4885/45/3/001 Boldyrev, 2000, Mechanochemistry of solids: past, present, and prospects, J. Mater. Synth. Process., 8, 121, 10.1023/A:1011347706721 Brady, 2001, A fracture mechanical analysis of fouling release from nontoxic antifouling coatings, Prog. Org. Coat., 43, 188, 10.1016/S0300-9440(01)00180-1 Fan, 2017, Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light (in English), RSC Adv. Article, 7, 37185, 10.1039/C7RA05732F