Construction of a multi-epitope protein for human Toxocara canis detection: Immunoinformatics approach multi-epitope construct for T. canis serodiagnosis

Informatics in Medicine Unlocked - Tập 26 - Trang 100732 - 2021
Morteza Shams1, Hassan Nourmohammadi2,1, Ali Asghari3, Gholam Basati1, Hamidreza Majidiani1, Razi Naserifar1, Hamid Irannejad4,5
1Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
2Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
3Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
4Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
5Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran

Tài liệu tham khảo

Auer, 2020, Toxocariasis and the clinical spectrum, Adv Parasitol, 109, 111, 10.1016/bs.apar.2020.01.005 Rostami, 2019, 13 Ma, 2018, Human toxocariasis, 18, e14 Eslahi, 2020, 20, 1 Baneth, 2016, 155, S54 Boldiš, 2015, 159, 252 Magnaval, 1991, 77, 697 Noordin, 2005, 93, 57 Watthanakulpanich, 2008, 106, 90 Fong, 2003, 34, 723 Yamasaki, 2000, 38, 1409 Długosz, 2015, 114, 3365 Holland, 2006 RMJVp, 2013, 193, 365 Backert, 2015, 7, 119 Chen, 2007, Prediction of linear B-cell epitopes using amino acid pair antigenicity scale, Amino Acids, 33, 423, 10.1007/s00726-006-0485-9 Majidiani, 2021, Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice, Microb Pathog, 155, 104925, 10.1016/j.micpath.2021.104925 Majidiani, 2020, Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis, Microb Pathog, 147, 104386, 10.1016/j.micpath.2020.104386 Majidiani, 2020, 9, 146 Nosrati, 2020, Toxoplasma gondii ROP38 protein: bioinformatics analysis for vaccine design improvement against toxoplasmosis, Microb Pathog, 149, 104488, 10.1016/j.micpath.2020.104488 Saha, 2006, Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network, Proteins: Struct, Funct, Bioinf., 65, 40, 10.1002/prot.21078 Yao, 2020, 299 Doytchinova, 2007, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines, BMC Bioinf, 8, 4, 10.1186/1471-2105-8-4 Dimitrov, 2014, AllerTOP v. 2—a server for in silico prediction of allergens, J Mol Model, 20, 2278, 10.1007/s00894-014-2278-5 Gupta, 2013, In silico approach for predicting toxicity of peptides and proteins, PloS One, 8, 10.1371/journal.pone.0073957 Dhanda, 2013 Nagpal, 2017, 7, 42851 Shintouo, 2020, Silico design and validation of OvMANE1, a chimeric antigen for human onchocerciasis diagnosis, Pathogens, 9, 495, 10.3390/pathogens9060495 Majid, 2019, Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach, Sci Rep, 9, 1, 10.1038/s41598-019-55613-w Hebditch, 2017, 33, 3098 Gasteiger, 2005, 571 Shams, 2021, Leishmanolysin gp63: bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis, Informatics in Medicine Unlocked, 24, 100626, 10.1016/j.imu.2021.100626 Geourjon, 1995, 11, 681 McGuffin, 2000, 16, 404 Shams, 2021, Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis, Infect Genet Evol, 89, 104714, 10.1016/j.meegid.2021.104714 Heo, 2013, GalaxyRefine: protein structure refinement driven by side-chain repacking, Nucleic Acids Res, 41, W384, 10.1093/nar/gkt458 Asghari, 2021, In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum, Infect Genet Evol, 10.1016/j.meegid.2021.104985 Ponomarenko, 2008, ElliPro: a new structure-based tool for the prediction of antibody epitopes, BMC Bioinf, 9, 514, 10.1186/1471-2105-9-514 Asghari, 2021, Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii, Infect Genet Evol, 105037, 10.1016/j.meegid.2021.105037 Craig, 2013, Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins, BMC Bioinf, 14, 1, 10.1186/1471-2105-14-S19-S1 Kozakov, 2017, The ClusPro web server for protein–protein docking, Nat Protoc, 12, 255, 10.1038/nprot.2016.169 Asghari, 2021, Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches, Eur J Pharmaceut Sci, 162, 105837, 10.1016/j.ejps.2021.105837 1956, The etiology of visceral larva migrans: I. Diagnostic morphology of infective second-stage, Toxocara larvae, 42, 349 HCJNe, 1950, Nematode endophthalmitis, Trans Am Acad Ophthalmol Otolaryngol, 55, 99 Hotez, 2009, 3 2013, 43, 999 Overgaauw, 1997, 23, 215 Fan, 2015, 28, 663 Kuenzli, 2016, 154, 107 Luna, 2018, 12 Mohammadzadeh, 2018, 112, 529 Noordin, 2020, Serodiagnostic methods for diagnosing larval toxocariasis, 109, 131 Del Prete, 1991, 88, 346 Beaver, 1952, 9, 7 Smith, 1991, 116 Moore, 2001, Interleukin-10 and the interleukin-10 receptor, 19, 683 Rael, 2011, 4, 54 Ebrahimi, 2019, 1 De Sousa, 2016, 143, 236 Nourmohammadi, 2020 Zhang, 2011, 1, 275 Moreau, 2010 Elsayed, 2020, Toll like receptors (tlrs) strategies for the control of Protozoan and helminthes parasitic infections. An updated review, BioscBiotechResComm, 13, 1