Construction of a multi-epitope protein for human Toxocara canis detection: Immunoinformatics approach multi-epitope construct for T. canis serodiagnosis
Tài liệu tham khảo
Auer, 2020, Toxocariasis and the clinical spectrum, Adv Parasitol, 109, 111, 10.1016/bs.apar.2020.01.005
Rostami, 2019, 13
Ma, 2018, Human toxocariasis, 18, e14
Eslahi, 2020, 20, 1
Baneth, 2016, 155, S54
Boldiš, 2015, 159, 252
Magnaval, 1991, 77, 697
Noordin, 2005, 93, 57
Watthanakulpanich, 2008, 106, 90
Fong, 2003, 34, 723
Yamasaki, 2000, 38, 1409
Długosz, 2015, 114, 3365
Holland, 2006
RMJVp, 2013, 193, 365
Backert, 2015, 7, 119
Chen, 2007, Prediction of linear B-cell epitopes using amino acid pair antigenicity scale, Amino Acids, 33, 423, 10.1007/s00726-006-0485-9
Majidiani, 2021, Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice, Microb Pathog, 155, 104925, 10.1016/j.micpath.2021.104925
Majidiani, 2020, Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis, Microb Pathog, 147, 104386, 10.1016/j.micpath.2020.104386
Majidiani, 2020, 9, 146
Nosrati, 2020, Toxoplasma gondii ROP38 protein: bioinformatics analysis for vaccine design improvement against toxoplasmosis, Microb Pathog, 149, 104488, 10.1016/j.micpath.2020.104488
Saha, 2006, Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network, Proteins: Struct, Funct, Bioinf., 65, 40, 10.1002/prot.21078
Yao, 2020, 299
Doytchinova, 2007, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines, BMC Bioinf, 8, 4, 10.1186/1471-2105-8-4
Dimitrov, 2014, AllerTOP v. 2—a server for in silico prediction of allergens, J Mol Model, 20, 2278, 10.1007/s00894-014-2278-5
Gupta, 2013, In silico approach for predicting toxicity of peptides and proteins, PloS One, 8, 10.1371/journal.pone.0073957
Dhanda, 2013
Nagpal, 2017, 7, 42851
Shintouo, 2020, Silico design and validation of OvMANE1, a chimeric antigen for human onchocerciasis diagnosis, Pathogens, 9, 495, 10.3390/pathogens9060495
Majid, 2019, Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach, Sci Rep, 9, 1, 10.1038/s41598-019-55613-w
Hebditch, 2017, 33, 3098
Gasteiger, 2005, 571
Shams, 2021, Leishmanolysin gp63: bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis, Informatics in Medicine Unlocked, 24, 100626, 10.1016/j.imu.2021.100626
Geourjon, 1995, 11, 681
McGuffin, 2000, 16, 404
Shams, 2021, Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis, Infect Genet Evol, 89, 104714, 10.1016/j.meegid.2021.104714
Heo, 2013, GalaxyRefine: protein structure refinement driven by side-chain repacking, Nucleic Acids Res, 41, W384, 10.1093/nar/gkt458
Asghari, 2021, In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum, Infect Genet Evol, 10.1016/j.meegid.2021.104985
Ponomarenko, 2008, ElliPro: a new structure-based tool for the prediction of antibody epitopes, BMC Bioinf, 9, 514, 10.1186/1471-2105-9-514
Asghari, 2021, Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii, Infect Genet Evol, 105037, 10.1016/j.meegid.2021.105037
Craig, 2013, Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins, BMC Bioinf, 14, 1, 10.1186/1471-2105-14-S19-S1
Kozakov, 2017, The ClusPro web server for protein–protein docking, Nat Protoc, 12, 255, 10.1038/nprot.2016.169
Asghari, 2021, Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches, Eur J Pharmaceut Sci, 162, 105837, 10.1016/j.ejps.2021.105837
1956, The etiology of visceral larva migrans: I. Diagnostic morphology of infective second-stage, Toxocara larvae, 42, 349
HCJNe, 1950, Nematode endophthalmitis, Trans Am Acad Ophthalmol Otolaryngol, 55, 99
Hotez, 2009, 3
2013, 43, 999
Overgaauw, 1997, 23, 215
Fan, 2015, 28, 663
Kuenzli, 2016, 154, 107
Luna, 2018, 12
Mohammadzadeh, 2018, 112, 529
Noordin, 2020, Serodiagnostic methods for diagnosing larval toxocariasis, 109, 131
Del Prete, 1991, 88, 346
Beaver, 1952, 9, 7
Smith, 1991, 116
Moore, 2001, Interleukin-10 and the interleukin-10 receptor, 19, 683
Rael, 2011, 4, 54
Ebrahimi, 2019, 1
De Sousa, 2016, 143, 236
Nourmohammadi, 2020
Zhang, 2011, 1, 275
Moreau, 2010
Elsayed, 2020, Toll like receptors (tlrs) strategies for the control of Protozoan and helminthes parasitic infections. An updated review, BioscBiotechResComm, 13, 1