The Number of Compatible Totally Bounded Quasi-Uniformities

Acta Mathematica Academiae Scientiarum Hungarica - Tập 88 - Trang 15-23 - 2000
H.-P. A. Künzi1, M. J. Pérez-Peñalver2
1Department of Mathematics, University of Berne, Berne, Switzerland E-mail
2E.S.I. Caminos, Canales y Puertos, Universidad Politécnica, Valencia, Spain E-mail

Tóm tắt

We prove that a topological space that admits a nontransitive totally bounded quasi-uniformity, admits at least $$2^{2^{N_0 } } $$ nontransitive totally bounded quasi-uniformities. Furthermore we show that each infinite T 2-space admits at least $$2^{2^{N_0 } } $$ transitive totally bounded quasi-uniformities. In fact, each supersober space having a discrete subspace of infinite cardinality κ admits at least $$2^{2^k } $$ transitive totally bounded quasi-uniformities.

Tài liệu tham khảo

P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces Lecture Notes Pure Appl. Math. 77, Dekker (New York, 1982). G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer (New York, 1980). L. Gillman and M. Jerison, Rings of Continuous Functions, Springer (New York, 1976). R. Hodel, Cardinal functions I, in Handbook of Set-Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland (Amsterdam, 1984, pp. 3–61. S. Koppelberg, Handbook of Boolean Algebras Volume 1, ed. J. D. Monk and R. Bonnet, North-Holland (Amsterdam, 1989). H. P. A. Künzi, Topological spaces with a unique compatible quasi-proximity, Arch. Math. (Basel) 43 (1984), 559–561. H. P. A. Künzi, Topological spaces with a coarsest compatible quasi-proximity, Quaestiones Math. 10 (1986), 179–196. H. P. A. Künzi, Nontransitive quasi-uniformities, Publ. Math. Debrecen 55 (1999), 161–167. H. P. A. Künzi, Remark on a result of Losonczi, Studia Math. Hungar. (to appear). H. P. A. Künzi and G. C. L. Brümmer, Sobrification and bicompletion of totally bounded quasi-uniform spaces, Math. Proc. Camb. Phil. Soc., 101 (1987), 237–247. H. P. A. Künzi and S. Watson, A nontrivial T 1-space admitting a unique quasiproximity, Glasgow Math. J., 38 (1996), 207–213. A. Losonczi, Topological spaces with a coarsest compatible quasi-uniformity, Quaestions Math. (to appear). A. Losonczi, On the cardinality of compatible quasi-uniformities, Topology Appl. (to appear). B. Pospíšil, Remark on bicompact spaces, Ann. Math., 38 (1937), 845–846.