Fast polynomial inversion for post quantum QC-MDPC cryptography
Tài liệu tham khảo
Aragon
NIST
Aragon
McEliece, 1978, A public-key cryptosystem based on algebraic coding theory, Deep Space Network Progress Report, 44, 114
Niederreiter, 1986, Knapsack-type cryptosystems and algebraic coding theory, Probl. Control Inf. Theory, 15, 157
Drucker, 2020, Fast polynomial inversion for post quantum QC-MDPC cryptography, 110
Drucker
Open Quantum Safe Project
Amazon Web Services
Misoczki
Aguilar Melchor
Hülsing, 2017, High-speed key encapsulation from NTRU, 232
Baldi
Itoh, 1988, A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases, Inf. Comput., 78, 171, 10.1016/0890-5401(88)90024-7
Bernstein, 2019, Fast constant-time gcd computation and modular inversion, IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019, 340, 10.46586/tches.v2019.i3.340-398
Guimarães, 2019, Optimized implementation of QC-MDPC code-based cryptography, Concurr. Comput., Pract. Exp., 31, 10.1002/cpe.5089
Guimar, 2019, Introducing arithmetic failures to accelerate QC-MDPC code-based cryptography, Code Based Cryptogr., 2, 44, 10.1007/978-3-030-25922-8_3
Wu, 2004, High-speed, low-complexity systolic designs of novel iterative division algorithms in gf(2m), IEEE Trans. Comput., 53, 375, 10.1109/TC.2004.1261843
Shoup
Gaudry
The OpenSSL Project
Drucker
Bos, 2010, ECC2K-130 on cell CPUs, 225
Drucker
Drucker
Drucker, 2018, Fast multiplication of binary polynomials with the forthcoming vectorized VPCLMULQDQ instruction, 115
Gueron
Sendrier, 2019, On the decoding failure rate of QC-MDPC bit-flipping decoders, 404
Drucker, 2019
Drucker, 2020