Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts

Angewandte Chemie - International Edition - Tập 59 Số 48 - Trang 21698-21705 - 2020
Shengwen Liu1,2, Maoyu Wang3,2, Xiaoxuan Yang1,2, Qiurong Shi1, Zhi Qiao1, Marcos Lucero3, Qing Ma4, Karren L. More5, David A. Cullen5, Zhenxing Feng3, Gang Wu1
1Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 USA
2these authors contributed equally to this work
3School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331 USA
4DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL, 60208, USA
5Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Tóm tắt

Abstract

Atomically dispersed and nitrogen coordinated single metal sites (M‐N‐C, M=Fe, Co, Ni, Mn) are the popular platinum group‐metal (PGM)‐free catalysts for many electrochemical reactions. Traditional wet‐chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M‐N‐C catalysts. The deposition of gaseous 2‐methylimidazole onto M‐doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD‐derived Fe‐N‐C catalyst exclusively contains atomically dispersed FeN4 sites with increased Fe loading relative to other catalysts from wet‐chemistry synthesis. The catalyst exhibited outstanding oxygen‐reduction activity in acidic electrolytes, which was further studied in proton‐exchange membrane fuel cells with encouraging performance.

Từ khóa


Tài liệu tham khảo

10.1038/s41929-019-0304-9

10.1002/adma.202000381

10.1039/C9EE01899A

10.1038/s41563-019-0487-0

10.1016/j.enchem.2019.100023

10.1039/C9SE00460B

10.1038/s41929-018-0164-8

10.1039/C9EE00877B

10.1039/C8EE02694G

10.1149/2.1091506jes

10.1021/jacs.7b10385

10.1021/acsenergylett.9b00804

Shi Q., 2020, Mater. Today

10.1002/aenm.201902844

10.1038/nmat4367

10.1021/acs.jpcc.7b00913

10.1021/acscatal.8b04381

10.1021/jacs.6b11248

10.1038/s41929-019-0237-3

10.1073/pnas.1800771115

10.1021/acsenergylett.8b00245

10.1002/adma.201808193

10.1002/aenm.201801226

10.1002/adma.201806312

10.1126/science.1170051

10.1126/science.1200832

10.1038/ncomms1427

10.1021/jacs.7b06514

10.1002/anie.201702473

10.1002/ange.201702473

10.1039/C8EE00673C

10.1021/acscatal.7b01649

10.1002/anie.201909312

10.1002/ange.201909312

10.1021/jacs.9b11197

10.1021/acsenergylett.8b00186

10.1149/07514.0025ecst

10.1039/C6EE03005J

10.1021/acscatal.5b02721

10.1038/ncomms7662

10.1002/anie.201709597

10.1002/ange.201709597

10.1002/anie.200351949

10.1002/ange.200351949

10.1016/j.matdes.2015.07.040

10.1016/j.matlet.2015.05.028

10.1021/cg5017017

10.1039/c1cc12763b

10.1007/s40820-019-0277-x

10.1038/nnano.2013.46

10.1016/j.nanoen.2015.01.026

10.1016/j.carbon.2005.12.029

10.1021/am900219g

10.1038/ncomms13285

10.1016/j.nanoen.2015.12.032

10.1126/science.aan2255

10.1002/anie.201303025

10.1002/ange.201303025

10.1002/aenm.201803737

10.1002/adma.201706758

10.1016/j.electacta.2012.09.057

10.1039/C9CS00903E

10.1016/j.coelec.2018.04.010

10.1002/adma.201807615

10.1039/C7EE02302B

10.1002/anie.201912451

10.1002/ange.201912451

10.1016/j.apcatb.2020.119400

10.1002/adma.201907399