Development of a miniature cyclone separator operating at low Reynolds numbers as a pre-separator for portable black carbon monitors
Tài liệu tham khảo
Rosen, 1978, Identification of the optically absorbing component in urban aerosols, Appl. Optics, 17, 3859, 10.1364/AO.17.003859
Petzold, 2004, Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon, J. Aerosol Sci., 35, 421, 10.1016/j.jaerosci.2003.09.005
Clague, 1999, A comparison of diesel engine soot with carbon black, Carbon, 37, 1553, 10.1016/S0008-6223(99)00035-4
Ray, 1998, Improving the removal efficiency of industrial-scale cyclones for particles smaller than five micrometre, Int. J. Mineral Process., 53, 39, 10.1016/S0301-7516(97)00055-0
Ahn, 2006, Design and performance evaluation of vacuum cleaners using cyclone technology, Kor. J. Chem. Eng., 23, 925, 10.1007/s11814-006-0009-z
Kenny, 2000, Development of a sharp-cut cyclone for ambient aerosol monitoring applications, Aerosol Sci. Technol., 32, 338, 10.1080/027868200303669
Kenny, 2000, A direct approach to the design of cyclones for aerosol-monitoring applications, J. Aerosol Sci., 31, 1407, 10.1016/S0021-8502(00)00047-1
Cauda, 2014, An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust, Ann. Occup. Hyg., 58, 995
Moore, 1990, Design of stairmand-type sampling cyclones, Am. Ind. Hyg. Assoc. J., 51, 151, 10.1080/15298669091369475
Moore, 1993, Performance modeling of single-inlet aerosol sampling cyclones, Environ. Sci. Technol., 27, 1842, 10.1021/es00046a012
Hsiao, 2009, Development of mini-cyclones as the size-selective inlet of miniature particle detectors, J. Aerosol Sci., 40, 481, 10.1016/j.jaerosci.2009.01.006
Lapple, 1950, Gravity and centrifugal separation, Am. Ind. Hyg. Assoc. Q., 11, 40
Barth, 1956, Design and layout of the cyclone separator on the basis of new investigations, Brennstoff-Wärme-Kraft, 8, 1
Iozia, 1989, Effect of cyclone dimensions on gas flow pattern and collection efficiency, Aerosol Sci. Technol., 10, 491, 10.1080/02786828908959289
Iozia, 1990, The logistic function and cyclone fractional efficiency, Aerosol Sci. Technol., 12, 598, 10.1080/02786829008959373
Sun, 2017, Numerical modeling of miniature cyclone, Powder Technol., 320, 325, 10.1016/j.powtec.2017.07.053
CORTES, 2007, Modeling the gas and particle flow inside cyclone separators, Prog. Energy Combust. Sci., 33, 409, 10.1016/j.pecs.2007.02.001
Gimbun, 2005, The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study, Chem. Eng. Process.: Process Intens., 44, 7, 10.1016/j.cep.2004.03.005
Gimbun, 2005, A CFD study on the prediction of cyclone collection efficiency, Int. J. Comput. Methods Eng. Sci. Mech., 6, 161, 10.1080/15502280590923649
Griffiths, 1996, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers, J. Aerosol Sci., 27, 281, 10.1016/0021-8502(95)00549-8
Hoffman, 2008
Overcamp, 1993, Effect of Reynolds number on the Stokes number of cyclones, Aerosol Sci. Technol., 19, 362, 10.1080/02786829308959643
Moore, 1996, Design methodology for multiple inlet cyclones, Environ. Sci. Technol., 30, 271, 10.1021/es950302e
Lidén, 1997, Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design, J. Aerosol Sci., 28, 853, 10.1016/S0021-8502(96)00479-X
Mezhericher, 2011, Modeling of particle pneumatic conveying using DEM and DPM methods, Part. Sci. Technol., 29, 197, 10.1080/02726351003792914
Krug, 2017, Revisiting the size selective performance of EPA's high-volume total suspended particulate matter (Hi-Vol TSP) sampler, Aerosol Sci. Technol., 51, 868, 10.1080/02786826.2017.1316358
J.H. Lim, S.J. Hwang, S.J. Yook, Analysis of the aspiration ratio of double-shrouded probes according to angle of attack and probe scale, Aerosol Sci. Technol. (in press). https://doi.org/10.1080/02786826.2021.1933376.
Cheng, 2014, A size-segregation method for monitoring the diurnal characteristics of atmospheric black carbon size distribution at urban traffic sites, Atmos. Environ., 90, 78, 10.1016/j.atmosenv.2014.03.023
Moteki, 2012, Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere, Geophys. Res. Lett., 39, L13802, 10.1029/2012GL052034
Wu, 2018, Quantifying black carbon light absorption enhancement with a novel statistical approach, Atmos. Chem. Phys., 18, 289, 10.5194/acp-18-289-2018
Sharma, 2017, An evaluation of three methods for measuring black carbon in Alert, Canada, Atmos. Chem. Phys., 17, 15225, 10.5194/acp-17-15225-2017
Helin, 2018, Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland, Atmos. Environ., 190, 87, 10.1016/j.atmosenv.2018.07.022
Eatough, 1993, A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere, Atmos. Environ., 27, 1213, 10.1016/0960-1686(93)90247-V
Borak, 2003, Comparison of NIOSH 5040 method versus aethalometer to monitor diesel particulate in school buses and at work sites, AIHA J., 64, 260, 10.1080/15428110308984816
Wang, 2011, Characterization of residential wood combustion particles using the two-wavelength aethalometer, Environ. Sci. Technol., 45, 7387, 10.1021/es2013984