A point to segment contact formulation for isogeometric, NURBS based finite elements
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hughes, 1977, A finite element method for large displacement contact and impact problems, 468
J.O. Hallquist, Nike2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids, Tech. Rep. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, 1979.
Bathe, 1985, A solution method for planar and axisymmetric contact problems, Int. J. Numer. Methods Engrg., 21, 65, 10.1002/nme.1620210107
Hallquist, 1985, Sliding interfaces with contact-impact in large-scale lagrange computations, Comput. Methods Appl. Mech. Engrg., 51, 107, 10.1016/0045-7825(85)90030-1
Wriggers, 1985, A note on tangent stiffness for fully nonlinear contact problems, Commun. Appl. Numer. Methods, 1, 199, 10.1002/cnm.1630010503
Wriggers, 1990, Finite element formulation of large deformation impact-contact problems with friction, Comput. Struct., 37, 319, 10.1016/0045-7949(90)90324-U
Laursen, 1993, A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems, Int. J. Numer. Methods Engrg., 36, 3451, 10.1002/nme.1620362005
Simo, 1985, A perturbed lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 163, 10.1016/0045-7825(85)90088-X
Papadopoulos, 1992, A mixed formulation for the finite element solution of contact problems, Computer Methods in Applied Mechanics and Engineering, 94, 373, 10.1016/0045-7825(92)90061-N
Papadopoulos, 1993, A simple algorithm for three-dimensional finite element analysis of contact problems, Comput. Struct., 46, 1107, 10.1016/0045-7949(93)90096-V
Zavarise, 1998, A segment-to-segment contact strategy, Math. Comput. Model., 28, 497, 10.1016/S0895-7177(98)00138-1
El-Abbasi, 2001, Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct., 79, 1473, 10.1016/S0045-7949(01)00048-7
C. Bernardi, Y. Maday, A. Patera, Domain decomposition by the mortar element method, in: H. Kasper, M. Garby (Eds.), Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters: Proceedings of the NATO Advanced Research Workshop on Asymptotic-Induced Numerical Methods for Partial Differential Equations, Critical Parameters, and Domain Decomposition, Science Series C, vol. 384, 25–28 May 1993, Beaune, Frankreich, NATO, 1993, pp. 269–286.
C. Bernardi, Y. Maday, A. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in: H. Brezis, J. Lions (Eds.), Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, vol. 12, 1994, pp. 13–51.
Ben Belgacem, 1998, The mortar finite element method for contact problems, Math. Comput. Model., 28, 263, 10.1016/S0895-7177(98)00121-6
Ben Belgacem, 2000, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. Anal., 37, 1198, 10.1137/S0036142998347966
Wohlmuth, 2003, Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems, SIAM J. Sci. Comput., 25, 324, 10.1137/S1064827502405318
McDewitt, 2000, A mortar-finite element formulation for frictional contact problems, Int. J. Numer. Methods Engrg., 48, 1525, 10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
Yang, 2005, Two dimensional mortar contact methods for large deformation frictional sliding, Int. J. Numer. Methods Engrg., 62, 1183, 10.1002/nme.1222
Puso, 2004, A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 601, 10.1016/j.cma.2003.10.010
Fischer, 2005, Frictionless 2D contact formulation for finite deformations based on the mortar method, Comput. Mech., 36, 226, 10.1007/s00466-005-0660-y
Wohlmuth, 2000, A mortar finite element method using dual spaces for the lagrange multiplier, SIAM J. Numer. Anal., 38, 989, 10.1137/S0036142999350929
Wohlmuth, 2001, Discretization Methods and Iterative Solvers Based on Domain Decomposition, vol. 17
Hüeber, 2005, A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 3147, 10.1016/j.cma.2004.08.006
Hartmann, 2007, Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy, Int. J. Numer. Methods Engrg., 70, 883, 10.1002/nme.1894
Hartmann, 2008, A mortar based contact formulation for non-linear dynamics using dual lagrange multipliers, Finite Elem. Anal. Des., 44, 245, 10.1016/j.finel.2007.11.018
Popp, 2009, A finite deformation mortar contact formulation using a primal-dual active set strategy, Int. J. Numer. Methods Engrg., 79, 1354, 10.1002/nme.2614
Cichosz, 2011, Consistent treatment of boundaries with mortar contact formulations using dual lagrange multipliers, Comput. Methods Appl. Mech. Engrg., 200, 1317, 10.1016/j.cma.2010.11.004
Padmanabhan, 2001, A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Finite Elem. Anal. Des., 37, 173, 10.1016/S0168-874X(00)00029-9
Wriggers, 2001, Smooth c1-interpolations for two-dimensional frictional contact problems, Int. J. Numer. Methods Engrg., 51, 1469, 10.1002/nme.227
Puso, 2002, A 3d contact smoothing method using Gregory patches, Int. J. Numer. Methods Engrg., 54, 1161, 10.1002/nme.466
Konyukhov, 2009, Incorporation of contact for high-order finite elements in covariant form, Comput. Methods Appl. Mech. Engrg., 198, 1213, 10.1016/j.cma.2008.04.023
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Temizer, 2011, Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 1100, 10.1016/j.cma.2010.11.020
Lu, 2011, Isogeometric contact analysis: geometric basis and formulation for frictionless contact, Comput. Methods Appl. Mech. Engrg., 200, 726, 10.1016/j.cma.2010.10.001
M. Matzen, 2D NURBS Kollokations-Kontaktformulierung, Master’s Thesis, Arbeit Nr. 10/03, Institut für Baustatik, Universität Stuttgart, 2010.
Zavarise, 2009, A modified node-to-segment algorithm passing the contact patch test, Int. J. Numer. Methods Engrg., 79, 379, 10.1002/nme.2559
Zavarise, 2009, The node-to-segment algorithm for 2d frictionless contact: classical formulation and special cases, Comput. Methods Appl. Mech. Engrg., 198, 3428, 10.1016/j.cma.2009.06.022
Kikuchi, 1988
Konyukhov, 2008, On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry, Comput. Methods Appl. Mech. Engrg., 197, 3045, 10.1016/j.cma.2008.02.009
Konyukhov, 2004
de Boor, 1972, On calculation with b-splines, J. Approx. Theory, 6, 50, 10.1016/0021-9045(72)90080-9
De Lorenzis, 2011, A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Int. J. Numer. Methods Engrg., 87, 1278, 10.1002/nme.3159
Wriggers, 2002
Auricchio, 2010, Isogeometic collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026
Beiraõ da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 38, 10.1016/j.cma.2012.05.020
Demko, 1985, On the existence of interpolating projections onto spline spaces, J. Approx. Theory, 43, 151, 10.1016/0021-9045(85)90123-6
Jator, 2007, A high order b-spline collocation method for linear boundary value problems, Appl. Math. Comput., 191, 100, 10.1016/j.amc.2007.02.027
Botella, 2002, On a collocation method for the solution of Navier–Stokes equations, Comput. Fluids, 31, 397, 10.1016/S0045-7930(01)00058-5
Boor, 1994
Bazilevs, 2010, Isogeometric analysis using t-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Höllig, 1987
Vuong, 2011, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554, 10.1016/j.cma.2011.09.004
D. Schillinger, L. Ded, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J. Hughes, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and t-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg. (2012), submitted for publication.