Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

Journal of Materials Research - Tập 18 - Trang 156-165 - 2003
Oomman K. Varghese1, Dawei Gong2, Maggie Paulose2, Craig A. Grimes2, Elizabeth C. Dickey1
1Department of Materials Science & Engineering and Materials Research Institute, The Pennsylvania State University, University Park, USA
2Department of Electrical Engineering & Materials Research Institute, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, USA

Tóm tắt

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

Tài liệu tham khảo

D. Grosso and G.J. de A.A.S. Illia, Adv. Mater. 13, 1085 (2001). P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Science. 396, 152 (1998). D.M. Antonelli, Microporous Mesoporous Mater. 30, 315 (1999). A. Mozalev, S. Magaino, and H. Imai, Electrochim. Acta 46, 2825 (2001). W. Deng, P. Bodart, M. Pruski, and B.H. Shanks, Microporous Mesoporous Mater. 52, 169 (2002). O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, and E.C. Dickey, J. Mater. Res. 17, 1162 (2002). V.I. Parvulescu, H. Bonnemann, V. Parvulescu, U. Endruschat, A. Rufinska, Ch.W. Lehmann, B. Tesche, and G. Poncelet, Appl. Catal., A 214, 273 (2001). M.S. Wong, D.M. Antonelli, and J.Y. Ying, Nanostruct. Mater. 9, 165 (1997). T. Fujii, T. Yano, K. Nakamura, and O. Miyawaki, J. Membr. Sci. 187, 171 (2001). D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Science 279, 548 (1998). M. Harada and M. Adachi, Adv. Mater. 12, 839 (2000). J. Zou, L. Pu, X. Bao, and D. Feng, Appl. Phys. Lett. 80, 1079 (2002). L. Pu, X. Bao, J. Zou, and D. Feng, Angew. Chem. 113, 1538 (2001). C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Chem. Commun. 16, 1582 (1997). D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001). A. Michailowski, D. Aimaawlawi, G. Cheng, and M. Moskovits, Chem. Phys. Lett. 349, 1 (2001). P. Hoyer, Langmuir 12, 1411 (1996). T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998). Q. Zhang, L. Gao, J. Sun, and S. Zheng, Chem. Lett. 2, 226 (2002). M. Adachi, Y. Murata, M. Harada, and S. Yoshikawa, Chem. Lett. 8, 942 (2000). Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, and A. Gedanken, Chem. Commun. 24, 2616 (2001). H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, J. Mater. Chem. 9, 2971 (1999). T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 11, 1307 (1999). G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L-M. Peng, Appl. Phys. Lett. 79, 3702 (2001). Q. Fan, B. McQuillin, D.D.C. Bradley, S. Whitelegg, A.B. Seddon, Chem. Phys. Lett. 347, 325 (2001). N-G. Park, J. van de Lagemaat, and A.J. Frank, J. Phys. Chem. B 104, 8989 (2000). D.T. On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Appl. Catal., A 222, 299 (2001). Z. Ma, Y. Yue, X. Deng, and Z. Gao, J. Mol. Catal., A 178, 97 (2002). X-S. Ye, Z-G. Xiao, D-S. Lin, S-Y. Huang, and Y-H. Man, Mater. Sci. and Eng., B 74, 133 (2000). L. Gao, Q. Li, Z. Song, and J. Wang, Sens. Actuators, B 71, 179 (2000). A. Rothschile, F. Edelman, Y. Komem, and F. Cosandey, Sens. Actuators, B 67, 282 (2000). W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (Wiley-Interscience, New York, 1976). K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, and H. Nagamoto, J. Mater. Chem. 3, 1151 (1993). Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79, 825 (1996). K-N.P. Kumar, J. Engell, J. Kumar, K. Keizer, T. Okubo, and M. Sadakata, J. Mater. Sci. Lett. 14, 1784 (1995). J.A. Varela, O.J. Whittemore, and E. Longo, Ceram. Int. 16, 177 (1990). O.J. Whittemore and J.J. Sipe, Powder Technol. 9, 159 (1974). K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, Nature 358, 48 (1992). K-N.P. Kumar, K. Keizer, and A.J. Burggraaf, J. Mater. Chem. 3, 1141 (1993). X-Z. Ding and X-H. Liu, J. Mater. Sci. Lett. 15, 1392 (1996). K.J.D. MacKenzie, Trans. J. Br. Ceram. Soc. 74, 29 (1975). F.C. Gennari and D.M. Pasquevich, J. Mater. Sci. 33, 1571 (1998). Y. Iida and S. Ozaki, J. Am. Ceram. Soc. 44, 120 (1961). K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okuba, and H. Nagamoto, J. Mater. Chem. 3, 923 (1993). H. Zhang and J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000). Z. Shunli, Z. Jingfang, Z. Zhijun, and D. Zuliang, Chin. Sci. Bull. 45, 1533 (2000). R.D. Shannon, J. Appl. Phys. 35, 3414 (1965). F. Gruy and M. Pijolat, J. Am. Ceram. Soc. 75, 657 (1992). J-L. Hebrard, P. Nortier, M. Pijolat, and M. Saustelle, J. Am. Ceram. Soc. 73, 79 (1990). H. Imai, H. Morimoto, A. Tominaga, and H. Hirashima, J. Sol-Gel Sci. Technol. 10, 45 (1997). H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, New York, 1974). N.P. Bansal, R.H. Doremus, A.J. Bruce, and C.T. Moynihan, J. Am. Ceram. Soc. 66 (1983) 233. H. Zhang and J.F. Banfield, J. Mater. Res. 15, 437 (2000). K-N.P. Kumar, K. Keizer, and A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993). K-N.P. Kumar, J. Tranto, B.N. Nair, J. Kumar, J.W. Høj, and J.E. Engell, Mater. Res. Bull. 29, 551 (1994). S. Vaudreuil, M. Bousmina, S. Kaliaguine, and L. Bonneviot, Microporous Mesoporous Mater. 44–45, 249 (2001). J.A. Moulijn, A.E. van Diepen, and F. Kapteijn, Appl. Catal., A 212, 3 (2001). D. Cismaru, N.I. Ionescu, M. Momirlan, and P. Nita, Rev. Roum. Phys. 24, 181 (1979). D. Cismaru and M. Momirlan, Rev. Roum. Phys. 23, 607 (1978). J.A. Varela and O.J. Whittemore, Proceedings of the 5th International Round Table Conference on Sintering (Elsevier, Amsterdam, The Netherlands, 1982), pp. 439–445. R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965). P.I. Gouma, P.K. Dutta, and M.J. Mills, Nanostruct. Mater. 11, 1231 (1999). P.I. Gouma and M.J. Mills, J. Am. Ceram. Soc. 84, 619 (2001). H. Zhang and J.F. Banfield, J. Mater. Chem. 8, 2073 (1998).