Real noise image adjustment networks for saliency-aware stylistic color retouch

Knowledge-Based Systems - Tập 242 - Trang 108317 - 2022
Bo Jiang1, Yao Lu1, Guangming Lu1, David Zhang2,3
1Department of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen 518057, China
2School of Science and Engineering, The Chinese University of Hong Kong at Shenzhen, Shenzhen 518172, China
3School of Data Science, Chinese University of Hong Kong Shenzhen, China

Tài liệu tham khảo

J. Yan, S. Lin, S.B. Kang, X. Tang, A Learning-to-Rank Approach for Image Color Enhancement, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2014, pp. 2987–2994. Liu, 2021, Bidirectional loss function for label enhancement and distribution learning, Knowl. Based Syst., 213, 10.1016/j.knosys.2020.106690 Li, 2021, Joint image fusion and denoising via three-layer decomposition and sparse representation, Knowl. Based Syst., 224, 10.1016/j.knosys.2021.107087 Luque, 2021, Moth swarm algorithm for image contrast enhancement, Knowl. Based Syst., 212 Li, 2021, A deep learning based image enhancement approach for autonomous driving at night, Knowl. Based Syst., 213, 10.1016/j.knosys.2020.106617 Tian, 2021, Designing and training of a dual CNN for image denoising, Knowl. Based Syst., 226, 10.1016/j.knosys.2021.106949 Liu, 2014, AutoStyle: Automatic style transfer from image collections to users’ images, Comput. Graph. Forum, 33, 10.1111/cgf.12409 J.-Y. Lee, K. Sunkavalli, Z.L. Lin, X. Shen, I.-S. Kweon, Automatic Content-Aware Color and Tone Stylization, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2470–2478. S.J. Hwang, A. Kapoor, S.B. Kang, Context-Based Automatic Local Image Enhancement, in: ECCV, 2012. Yan, 2016, Automatic photo adjustment using deep neural networks, ACM Trans. Graph., 35, 1, 10.1145/2980179.2980241 Reinhard, 2001, Color transfer between images, IEEE Comput. Graph. Appl., 21, 34, 10.1109/38.946629 Jiang, 2021, EnlightenGAN: Deep light enhancement without paired supervision, IEEE Trans. Image Process., 30, 2340, 10.1109/TIP.2021.3051462 J. Liang, H. Zeng, L. Zhang, High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network, in: CVPR, 2021. E. Liu, S. Li, S. Liu, Color Enhancement Using Global Parameters and Local Features Learning, in: ACCV, 2020. S. Bianco, C. Cusano, F. Piccoli, R. Schettini, Learning Parametric Functions for Color Image Enhancement, in: CCIW, 2019. S. Bianco, C. Cusano, F. Piccoli, R. Schettini., Content-Preserving Tone Adjustment for Image Enhancement, in: 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2019, pp. 1936–1943. Y. Chen, Y.-C. Wang, M.-H. Kao, Y.-Y. Chuang, Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs, in: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6306–6314. Han, 2017, Cartoon and texture decomposition-based color transfer for fabric images, IEEE Trans. Multimed., 19, 80, 10.1109/TMM.2016.2608000 S. Moran, P. Marza, S.G. McDonagh, S. Parisot, G. Slabaugh, DeepLPF: Deep Local Parametric Filters for Image Enhancement, in: 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 12823–12832. Li, 2020 Hu, 2020, Squeeze-and-excitation networks, IEEE Trans. Pattern Anal. Mach. Intell., 42, 2011, 10.1109/TPAMI.2019.2913372 S.W. Zamir, A. Arora, S. Khan, M. Hayat, F. Khan, M.-H. Yang, L. Shao, Multi-Stage Progressive Image Restoration, in: CVPR, 2021. Zamir, 2020 B. Zhang, S. Jin, Y. Xia, Y. Huang, Z. Xiong, Attention Mechanism Enhanced Kernel Prediction Networks for Denoising of Burst Images, in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2020, pp. 2083–2087. Gharbi, 2019, Sample-based Monte Carlo denoising using a kernel-splatting network, ACM Trans. Graph., 38, 1, 10.1145/3306346.3322954 V. Bychkovsky, S. Paris, E. Chan, F. Durand, Learning photographic global tonal adjustment with a database of input/output image pairs, in: CVPR 2011, 2011, pp. 97–104. Gharbi, 2017, Deep bilateral learning for real-time image enhancement, ACM Trans. Graph., 36, 1, 10.1145/3072959.3073592 Zhang, 2017, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26, 3142, 10.1109/TIP.2017.2662206 A. Krull, T.-O. Buchholz, F. Jug, Noise2Void - Learning Denoising From Single Noisy Images, in: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 2124–2132. S. Guo, Z. Yan, K. Zhang, W. Zuo, L. Zhang, Toward Convolutional Blind Denoising of Real Photographs, in: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 1712–1722. B. Mildenhall, J.T. Barron, J. Chen, D. Sharlet, R. Ng, R.E. Carroll, Burst Denoising with Kernel Prediction Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2502–2510. J. Gu, H. Lu, W. Zuo, C. Dong, Blind Super-Resolution With Iterative Kernel Correction, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 1604–1613. S. Woo, J. Park, J.-Y. Lee, I.-S. Kweon, CBAM: Convolutional Block Attention Module, in: ECCV, 2018. Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 11531–11539. Ho, 2019 Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, H. Shi, W. Liu, CCNet: Criss-Cross Attention for Semantic Segmentation, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, 2019, pp. 603–612. R. Quan, X. Dong, Y. Wu, L. Zhu, Y. Yang, Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, 2019, pp. 3749–3758. W. Li, X. Zhu, S. Gong, Harmonious Attention Network for Person Re-identification, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2285–2294. R. Quan, X. Yu, Y. Liang, Y. Yang, Removing Raindrops and Rain Streaks in One Go, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 9143–9152. Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y.R. Fu, Image Super-Resolution Using Very Deep Residual Channel Attention Networks, in: ECCV, 2018. Gauvain, 1994, Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains, IEEE Trans. Speech Audio Process., 2, 291, 10.1109/89.279278 Ronneberger, 2015 V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: ICML, 2010. Hahnloser, 2003, Permitted and forbidden sets in symmetric threshold-linear networks, Neural Comput., 15, 621, 10.1162/089976603321192103 J. Han, C. Moraga, The Influence of the Sigmoid Function Parameters on the Speed of Backpropagation Learning, in: IWANN, 1995. Hendrycks, 2016 J. Choe, H. Shim, Attention-Based Dropout Layer for Weakly Supervised Object Localization, in: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 2214–2223. S.W. Zamir, A. Arora, S. Khan, M. Hayat, F. Khan, M.-H. Yang, L. Shao, CycleISP: Real Image Restoration via Improved Data Synthesis, in: 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 2693–2702. Y. Kim, J.W. Soh, G.Y. Park, N. Cho, Transfer Learning From Synthetic to Real-Noise Denoising With Adaptive Instance Normalization, in: 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 3479–3489. Kingma, 2015 K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, in: 2015 IEEE International Conference on Computer Vision, ICCV, 2015, pp. 1026–1034. H. Zhao, X. Kong, J. He, Y. Qiao, C. Dong, Efficient Image Super-Resolution Using Pixel Attention, in: ECCV Workshops, 2020.