Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma

Nature Genetics - Tập 46 Số 2 - Trang 176-181 - 2014
Jessica Okosun1, Csaba Bödör1, Jun Wang2, Shamzah Araf1, Cheng-Yuan Yang3, Chenyi Pan4, Sören Boller3, Davide Cittaro5, Monika Bożek6, Sameena Iqbal1, B. Talin1, David Wrench1, Jacek Marzec2, Kiran Tawana1, М. М. Попов1, Ciarán Ó’Riain1, Derville O’Shea1, Emanuela Carlotti1, Andrew Davies7, Charles H. Lawrie8, András Matolcsy9, Maria Calaminici1, A. J. Norton10, Richard Byers11, Charles A. Mein6, Elia Stupka5, T. Andrew Lister1, Georg Lenz12, Silvia Montoto1, John G. Gribben1, Yuhong Fan13, Rudolf Grosschedl3, Claude Chelala2, Jude Fitzgibbon1
1Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
2Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
3Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
4School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
5Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
6Genome Centre, Barts and the London School of Medicine and Dentistry, London, UK
7Cancer Sciences Division, University of Southampton, Southampton, UK
8Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
91st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
10Department of Histopathology, Christie National Health Service (NHS) Foundation Trust, Manchester, UK
11Department of Histopathology, Manchester Royal Infirmary, Manchester, UK
12Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin, Berlin, Germany
13Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Swenson, W.T. et al. Improved survival of follicular lymphoma patients in the United States. J. Clin. Oncol. 23, 5019–5026 (2005).

Al-Tourah, A.J. et al. Population-based analysis of incidence and outcome of transformed non-Hodgkin's lymphoma. J. Clin. Oncol. 26, 5165–5169 (2008).

Montoto, S. & Fitzgibbon, J. Transformation of indolent B-cell lymphomas. J. Clin. Oncol. 29, 1827–1834 (2011).

Montoto, S. et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J. Clin. Oncol. 25, 2426–2433 (2007).

Carlotti, E. et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood 113, 3553–3557 (2009).

Eide, M.B. et al. Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones. Blood 116, 1489–1497 (2010).

Ruminy, P. et al. Sμ mutation patterns suggest different progression pathways in follicular lymphoma: early direct or late from FL progenitor cells. Blood 112, 1951–1959 (2008).

Weigert, O. et al. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2, 47–55 (2012).

Bödör, C. et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia 25, 726–729 (2011).

Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

Davis, R.E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88–92 (2010).

Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

Zhang, J. et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 110, 1398–1403 (2013).

Bednar, J. et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl. Acad. Sci. USA 95, 14173–14178 (1998).

Croston, G.E., Kerrigan, L.A., Lira, L.M., Marshak, D.R. & Kadonaga, J.T. Sequence-specific antirepression of histone H1–mediated inhibition of basal RNA polymerase II transcription. Science 251, 643–649 (1991).

Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

Brown, D.T., Izard, T. & Misteli, T. Mapping the interaction surface of linker histone H10 with the nucleosome of native chromatin in vivo. Nat. Struct. Mol. Biol. 13, 250–255 (2006).

Goytisolo, F.A. et al. Identification of two DNA-binding sites on the globular domain of histone H5. EMBO J. 15, 3421–3429 (1996).

Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. & Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

Vyas, P. & Brown, D.T. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H10 and H1c. J. Biol. Chem. 287, 11778–11787 (2012).

Mottok, A. et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 114, 4503–4506 (2009).

Ritz, O. et al. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 114, 1236–1242 (2009).

Baus, D. et al. STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical Hodgkin lymphoma cell line. Leukemia 23, 1885–1893 (2009).

Mottok, A., Renné, C., Willenbrock, K., Hansmann, M.L. & Bräuninger, A. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110, 3387–3390 (2007).

Ritz, O. et al. STAT6 activity is regulated by SOCS-1 and modulates BCL-XL expression in primary mediastinal B-cell lymphoma. Leukemia 22, 2106–2110 (2008).

Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

Ngo, V.N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

Harvey, R.C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874–4884 (2010).

Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 7, 760–773 (1993).

Treiber, N., Treiber, T., Zocher, G. & Grosschedl, R. Structure of an Ebf1:DNA complex reveals unusual DNA recognition and structural homology with Rel proteins. Genes Dev. 24, 2270–2275 (2010).

Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. Immunity 32, 714–725 (2010).

Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

Green, M.R. et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121, 1604–1611 (2013).

Treon, S.P. et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N. Engl. J. Med. 367, 826–833 (2012).

Cao, K. et al. High-resolution mapping of H1 linker histone variants in embryonic stem cells. PLoS Genet. 9, e1003417 (2013).

Fan, Y. & Skoultchi, A.I. Genetic analysis of H1 linker histone subtypes and their functions in mice. Methods Enzymol. 377, 85–107 (2004).

Ladetto, M. et al. A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients. Exp. Hematol. 29, 183–193 (2001).

Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA 107, 16910–16915 (2010).

Saunders, C.T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

Dayem Ullah, A.Z., Lemoine, N.R. & Chelala, C. SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Res. 40, W65–W70 (2012).

Koboldt, D.C. et al. VarScan2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Landau, D.A. & Wu, C.J. Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med. 5, 47 (2013).

Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

Khodabakhshi, A.H. et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3, 1308–1319 (2012).

Zhang, Y. et al. Histone H1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 8, e1002691 (2012).

Medrzycki, M., Zhang, Y., Cao, K. & Fan, Y. Expression analysis of mammalian linker-histone subtypes. J. Vis. Exp. 61, e3577 (2012).