A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion

Trends in Pharmacological Sciences - Tập 36 - Trang 440-451 - 2015
Ryan E. Temel1, J. Mark Brown2
1Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA
2Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA

Tài liệu tham khảo

Go, 2013, Executive summary: heart disease and stroke statistics – 2013 update: a report from the American Heart Association, Circulation, 127, 143, 10.1161/CIR.0b013e318282ab8f Rader, 2012, The not-so-simply HDL story: is it time to revise the HDL cholesterol hypothesis?, Nat. Med., 18, 1344, 10.1038/nm.2937 Boden, 2011, Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy, N. Engl. J. Med., 365, 2255, 10.1056/NEJMoa1107579 Schwartz, 2012, Effect of dalcetrapib in patients with a recent acute coronary syndrome, N. Engl. J. Med., 367, 2089, 10.1056/NEJMoa1206797 Voight, 2012, Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study, Lancet, 380, 572, 10.1016/S0140-6736(12)60312-2 Dietschy, 2002, Control of cholesterol turnover in the mouse, J. Biol. Chem., 277, 3801, 10.1074/jbc.R100057200 Rader, 2009, The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis, J. Lipid Res., 50, S189, 10.1194/jlr.R800088-JLR200 Rosenson, 2012, Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport, Circulation, 125, 1905, 10.1161/CIRCULATIONAHA.111.066589 Temel, 2010, Biliary sterol secretion is not required for macrophage reverse cholesterol transport, Cell Metab., 12, 96, 10.1016/j.cmet.2010.05.011 Temel, 2012, Biliary and nonbiliary contributions to reverse cholesterol transport, Curr. Opin. Lipidol., 23, 85, 10.1097/MOL.0b013e3283508c21 Kruit, 2005, Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice, Gastroenterology, 128, 147, 10.1053/j.gastro.2004.10.006 Van der Velde, 2007, Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice, Gastroenterology, 133, 967, 10.1053/j.gastro.2007.06.019 Brown, 2008, Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss, J. Biol. Chem., 283, 10522, 10.1074/jbc.M707659200 van der Veen, 2009, Activation of liver X receptor stimulates trans-intestinal excretion of plasma cholesterol, J. Biol. Chem., 284, 19211, 10.1074/jbc.M109.014860 Vrins, 2009, PPARδ activation leads to increased trans intestinal cholesterol efflux, J. Lipid Res., 50, 2046, 10.1194/jlr.M800579-JLR200 van der Velde, 2008, Regulation of direct transintestinal cholesterol excretion in mice, Am. J. Physiol. Gastrointest. Liver Physiol., 295, G203, 10.1152/ajpgi.90231.2008 Jakulj, 2010, Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice, FEBS Lett., 584, 3625, 10.1016/j.febslet.2010.07.035 Le May, 2013, Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1, Arterioscler. Thromb. Vasc. Biol., 33, 1484, 10.1161/ATVBAHA.112.300263 Yu, 2002, Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion, Proc. Natl. Acad. Sci. U.S.A., 99, 16237, 10.1073/pnas.252582399 Graf, 2003, ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion, J. Biol. Chem., 278, 48275, 10.1074/jbc.M310223200 Wiersma, 2009, Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice, Hepatology, 50, 1263, 10.1002/hep.23112 Temel, 2007, Hepatic Niemann–Pick C1-like 1 regulates biliary cholesterol concentrations and is a target of ezetimibe, J. Clin. Invest., 117, 1968, 10.1172/JCI30060 Groen, 2008, Abcg5/8 independent biliary cholesterol excretion in Atp8b1-deficient mice, Gastroenterology, 134, 2091, 10.1053/j.gastro.2008.02.097 Sieber, 2012, Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro, Cell Metab., 15, 122, 10.1016/j.cmet.2011.11.011 Babin, 1997, Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development, Proc. Natl. Acad. Sci. U.S.A., 94, 8622, 10.1073/pnas.94.16.8622 Wang, 2013, Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy, Mol. Med. Rep., 8, 1472, 10.3892/mmr.2013.1691 Temel, 2010, A new framework for reverse cholesterol transport: non-biliary contributions to reverse cholesterol transport, World J. Gastroenterol., 16, 5946 Tietge, 2013, Role of TICE? Advancing the concept of transintestinal cholesterol excretion, Arterioscler. Thromb. Vasc. Biol., 33, 1452, 10.1161/ATVBAHA.113.301562 Van der Velde, 2010, Transintestinal cholesterol efflux, Curr. Opin. Lipidol., 21, 167, 10.1097/MOL.0b013e3283395e45 Kruit, 2006, Emerging roles of the intestine in control of cholesterol metabolism, World J. Gastroenterol., 12, 6429, 10.3748/wjg.v12.i40.6429 Brufau, 2011, Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion, Arterioscler. Thromb. Vasc. Biol., 31, 1726, 10.1161/ATVBAHA.108.181206 Jakulj, 2013, Intestinal cholesterol secretion: future clinical implications, Neth. J. Med., 71, 459 Cheng, 1959, Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction, Proc. Soc. Exp. Biol. Med., 101, 223, 10.3181/00379727-101-24890 Stanley, 1959, Serum cholesterol esters and intestinal cholesterol secretion and absorption in obstructive jaundice due to cancer, N. Engl. J. Med., 261, 368, 10.1056/NEJM195908202610802 Simmonds, 1967, Absorption of cholesterol from a micellular solution: intestinal perfusion studies in man, J. Clin. Invest., 46, 874, 10.1172/JCI105587 Deckelbaum, 1977, Failure of complete bile diversion and oral bile acid therapy in the treatment of homozygous familial hypercholesterolemia, N. Engl. J. Med., 296, 465, 10.1056/NEJM197703032960901 Hellman, 1955, Isotopic studies of plasma cholesterol of endogenous and exogenous origins, J. Clin. Invest., 34, 48, 10.1172/JCI103062 Rosenfeld, 1959, The relation of plasma and biliary cholesterol to bile acid synthesis in man, J. Clin. Invest., 38, 1334, 10.1172/JCI103908 Sperry, 1927, Lipid excretion IV. A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism, J. Biol. Chem., 71, 351, 10.1016/S0021-9258(18)84421-0 Pertsemlidis, 1973, Regulation of cholesterol metabolism in the dog I. Effects of complete bile diversion and of cholesterol feeding on absorption, synthesis, accumulation, and excretion rates measured during life, J. Clin. Invest., 52, 2353, 10.1172/JCI107424 Dietschy, 1968, The role of bile salts in controlling the rate of intestinal cholesterogenesis, J. Clin. Invest., 47, 286, 10.1172/JCI105725 Dietschy, 1965, Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control, J. Clin. Invest., 44, 1311, 10.1172/JCI105237 Bandsma, 1998, Contribution of newly synthesized cholesterol to rat plasma and bile determined by mass isotopomer distribution analysis: bile-salt flux promotes secretion of newly synthesized cholesterol into bile, Biochem. J., 329, 699, 10.1042/bj3290699 Voshol, 1998, Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice, Gastroenterology, 114, 1024, 10.1016/S0016-5085(98)70323-3 Wang, 2015, Relative roles of ABCG5/ABCG8 in liver and intestine, J. Lipid Res., 56, 319, 10.1194/jlr.M054544 Glomset, 1968, The plasma lecithin:cholesterol acyltransferase reaction, J. Lipid Res., 9, 155, 10.1016/S0022-2275(20)43114-1 Glomset, 1973, The metabolic role of lecithin: cholesterol acyltransferase: perspectives from pathology, Adv. Lipid Res., 11, 1, 10.1016/B978-0-12-024911-4.50008-8 Phillips, 2014, Molecular mechanisms of cellular cholesterol efflux, J. Biol. Chem., 289, 24020, 10.1074/jbc.R114.583658 Rothblatt, 2010, High-density lipoprotein heterogeneity and function in reverse cholesterol transport, Curr. Opin. Lipidol., 21, 229, 10.1097/MOL.0b013e328338472d Dietschy, 1993, Role of the liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans, J. Lipid Res., 34, 1637, 10.1016/S0022-2275(20)35728-X Acton, 1996, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science, 271, 518, 10.1126/science.271.5248.518 Krieger, 1999, Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI, Annu. Rev. Biochem., 68, 523, 10.1146/annurev.biochem.68.1.523 Osono, 1996, Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma, Proc. Natl. Acad. Sci. U.S.A., 93, 4114, 10.1073/pnas.93.9.4114 Jolley, 1998, Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration, J. Lipid Res., 39, 2142, 10.1016/S0022-2275(20)32469-X Groen, 2001, Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL, J. Clin. Invest., 108, 843, 10.1172/JCI200112473 Xie, 2009, ABCA1 plays no role in centripetal movement of cholesterol from peripheral tissues to the liver and intestine in the mouse, J. Lipid Res., 50, 1316, 10.1194/jlr.M900024-JLR200 Hellerstein, 2014, Reverse cholesterol transport fluxes, Curr. Opin. Lipidol., 25, 40, 10.1097/MOL.0000000000000050 Briand, 2010, The use of dyslipidemic hamsters to evaluate drug-induced alterations in reverse cholesterol transport, Curr. Opin. Investig. Drugs, 11, 289 Castro-Perez, 2011, Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters, J. Lipid Res., 52, 1965, 10.1194/jlr.M016410 Barter, 2003, Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 23, 160, 10.1161/01.ATV.0000054658.91146.64 Timmins, 2005, Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I, J. Clin. Invest., 115, 1333, 10.1172/JCI200523915 Brunham, 2006, Intestinal ABCA1 directly contributes to HDL biogenesis in vivo, J. Clin. Invest., 116, 1052, 10.1172/JCI27352 Kunnen, 2012, Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis, J. Lipid Res., 53, 1783, 10.1194/jlr.R024513 Yazdanyar, 2011, Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport, Curr. Atheroscler. Rep., 13, 242, 10.1007/s11883-011-0172-5 Zannis, 2015, HDL biogenesis, remodeling, and catabolism, Handb. Exp. Pharmacol., 224, 53, 10.1007/978-3-319-09665-0_2 Mulya, 2008, Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL, J. Lipid Res., 49, 2390, 10.1194/jlr.M800241-JLR200 Ji, 2014, Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling, Arterioscler. Thromb. Vasc. Biol., 34, 1910, 10.1161/ATVBAHA.114.303533 Lee, 2004, Prebeta high density lipoprotein has two metabolic fates in human apolipoprotein A-I transgenic mice, J. Lipid Res., 45, 716, 10.1194/jlr.M300422-JLR200 Martinez, 2003, Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, 421, 75, 10.1038/nature01250 Fabre, 2010, P2Y13 receptor is critical for reverse cholesterol transport, Hepatology, 52, 1477, 10.1002/hep.23897 Serhan, 2013, Chronic pharmacologic activation of P2Y13 receptor in mice decreases HDL-cholesterol by increasing hepatic HDL uptake and bile acid secretion, Biochim. Biophys. Acta, 1831, 719, 10.1016/j.bbalip.2012.12.006 Jacquet, 2005, The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis, Cell. Mol. Life Sci., 62, 2508, 10.1007/s00018-005-5194-0 Silver, 2001, High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type I results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion, J. Biol. Chem., 276, 25287, 10.1074/jbc.M101726200 Burgos, 2004, Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells, Proc. Natl. Acad. Sci. U.S.A., 101, 3845, 10.1073/pnas.0400295101 Harder, 2007, SR-BI undergoes cholesterol-stimulated transcytosis to the bile canaliculus in polarized WIF-B cells, J. Biol. Chem., 282, 1445, 10.1074/jbc.M604627200 Wustner, 2004, Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells, J. Lipid Res., 45, 427, 10.1194/jlr.M300440-JLR200 Dikkers, 2013, Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice, Hepatology, 58, 293, 10.1002/hep.26316 Marshall, 2014, Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion, PLoS ONE, 9, e98953, 10.1371/journal.pone.0098953 Bura, 2013, Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice, J. Lipid Res., 54, 1567, 10.1194/jlr.M034454 Brufau, 2011, A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice, PLoS ONE, 6, e21576, 10.1371/journal.pone.0021576 Altmann, 2004, Niemann–Pick C1 like 1 protein is critical for intestinal cholesterol absorption, Science, 303, 1201, 10.1126/science.1093131 Sehayek, 2008, Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages, Arterioscler. Thromb. Vasc. Biol., 28, 1296, 10.1161/ATVBAHA.108.165803 Plump, 1994, Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse, Proc. Natl. Acad. Sci. U.S.A., 91, 9607, 10.1073/pnas.91.20.9607 Paszty, 1994, Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice, J. Clin. Invest., 94, 899, 10.1172/JCI117412 Choudhury, 2004, High-density lipoproteins retard the progression of atherosclerosis and favorably remodel lesions without suppressing indices of inflammation or oxidation, Arterioscler. Thromb. Vasc. Biol., 24, 1904, 10.1161/01.ATV.0000142808.34602.25 Benoit, 1999, Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models, Circulation, 99, 105, 10.1161/01.CIR.99.1.105 Belalcazar, 2003, Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia, Circulation, 107, 2726, 10.1161/01.CIR.0000066913.69844.B2 Van Craeyveld, 2011, Regression and stabilization of advanced murine atherosclerosis lesions: a comparison of LDL lowering and HDL raising gene transfer strategies, J. Mol. Med., 89, 555, 10.1007/s00109-011-0722-x Miyazaki, 1995, Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits, Arterioscler. Thromb. Vasc. Biol., 15, 1882, 10.1161/01.ATV.15.11.1882 Tangirala, 1999, Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice, Circulation, 100, 1816, 10.1161/01.CIR.100.17.1816 Shah, 2001, High-dose recombinant apolipoprotein A-I (Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice. Potential implications for acute plaque stabilization, Circulation, 103, 3047, 10.1161/hc2501.092494 Badimon, 1990, Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit, J. Clin. Invest., 85, 1234, 10.1172/JCI114558 Rong, 2001, Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content, Circulation, 104, 2447, 10.1161/hc4501.098952 Feig, 2011, HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells, Proc. Natl. Acad. Sci. U.S.A., 108, 7166, 10.1073/pnas.1016086108 Navab, 2011, HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms, Nat. Rev. Cardiol., 8, 222, 10.1038/nrcardio.2010.222 Tall, 2012, Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis, Arterioscler. Thromb. Vasc. Biol., 32, 2547, 10.1161/ATVBAHA.112.300134 Shah, 2013, Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond, J. Lipid Res., 54, 2575, 10.1194/jlr.R035725 Vickers, 2014, HDL and cholesterol: life after the divorce?, J. Lipid Res., 55, 4, 10.1194/jlr.R035964 Bi, 2014, Liver ABCA1 deletion in LDLrKO mice does not impair macrophage reverse cholesterol transport or exacerbate atherogenesis, Arterioscler. Thromb. Vasc. Biol., 33, 2288, 10.1161/ATVBAHA.112.301110 Plosch, 2002, Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1, J. Biol. Chem., 277, 33870, 10.1074/jbc.M206522200 Tanigawa, 2009, Lecithin:cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo, Circulation, 120, 160, 10.1161/CIRCULATIONAHA.108.825109 Small, 2003, Role of ABC transporters in secretion of cholesterol from liver into bile, Proc. Natl. Acad. Sci. U.S.A., 100, 4, 10.1073/pnas.0237205100 Carey, 1978, The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man, J. Clin. Invest., 61, 998, 10.1172/JCI109025 Wu, 2004, Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice, J. Biol. Chem., 279, 22913, 10.1074/jbc.M402838200 Basso, 2007, Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited, J. Lipid Res., 48, 114, 10.1194/jlr.M600353-JLR200 Vrins, 2012, Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein, J. Lipid Res., 53, 2017, 10.1194/jlr.M022194 Marshall, 2014, Reduction of VLDL secretion decreases cholesterol excretion in Niemann–Pick C1-like 1 hepatic transgenic mice, PLoS ONE, 9, e84418, 10.1371/journal.pone.0084418 Dikkers, 2014, Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice, J. Lipid Res., 55, 816, 10.1194/jlr.M042986 Zhang, 2005, Hepatic overexpression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo, J. Clin. Invest., 115, 2870, 10.1172/JCI25327 Zelcer, 2009, LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor, Science, 325, 100, 10.1126/science.1168974 Herz, 1988, Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor, EMBO J., 7, 4119, 10.1002/j.1460-2075.1988.tb03306.x Garcia-Miranda, 2010, Rat small intestine expresses the reelin–Disabled-1 signaling pathway, Exp. Physiol., 95, 498, 10.1113/expphysiol.2009.050682 Nijstad, 2011, Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice, Gastroenterology, 140, 1043, 10.1053/j.gastro.2010.11.055 Schultz, 2000, Role of LXRs in control of lipogenesis, Genes Dev., 14, 2832, 10.1101/gad.850400 Hong, 2014, The LXR–Idol axis differentially regulates plasma LDL levels in primates and mice, Cell Metab., 20, 910, 10.1016/j.cmet.2014.10.001 Yasuda, 2010, Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo, Arterioscler. Thromb. Vasc. Biol., 30, 781, 10.1161/ATVBAHA.109.195693 Lo Sasso, 2010, Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis, Cell Metab., 12, 187, 10.1016/j.cmet.2010.07.002 Briand, 2009, Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal cholesterol reabsorption of HDL-derived cholesterol, Clin. Transl. Sci., 2, 127, 10.1111/j.1752-8062.2009.00098.x Maugeais, 2013, rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment, Atherosclerosis, 229, 94, 10.1016/j.atherosclerosis.2013.04.009 Uto-Kondo, 2014, Ezetimibe enhance macrophage reverse cholesterol transport in hamsters: contribution of hepatobiliary pathway, Biochim. Biophys. Acta, 1841, 1247, 10.1016/j.bbalip.2014.05.009 Davidson, 2013, Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans, Atherosclerosis, 230, 322, 10.1016/j.atherosclerosis.2013.08.006 Xie, 2013, Ezetimibe inhibits hepatic Niemann–Pick C1-like 1 to facilitate macrophage reverse cholesterol transport, Arterioscler. Thromb. Vasc. Biol., 33, 920, 10.1161/ATVBAHA.112.301187 Warrier, 2015, The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance, Cell Rep., 10.1016/j.celrep.2014.12.036 Brown, 2014, Metaorganismal nutrient metabolism as a basis of cardiovascular disease, Curr. Opin. Lipidol., 25, 48, 10.1097/MOL.0000000000000036 Wang, 2011, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, 472, 57, 10.1038/nature09922 Koeth, 2013, Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis, Nat. Med., 19, 576, 10.1038/nm.3145 Tang, 2013, Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk, N. Engl. J. Med., 368, 1575, 10.1056/NEJMoa1109400 Bennett, 2013, Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation, Cell Metab., 17, 49, 10.1016/j.cmet.2012.12.011 Koeth, 2014, γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO, Cell Metab., 20, 799, 10.1016/j.cmet.2014.10.006 Shih, 2015, Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis, J. Lipid Res., 56, 22, 10.1194/jlr.M051680