A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion
Tài liệu tham khảo
Go, 2013, Executive summary: heart disease and stroke statistics – 2013 update: a report from the American Heart Association, Circulation, 127, 143, 10.1161/CIR.0b013e318282ab8f
Rader, 2012, The not-so-simply HDL story: is it time to revise the HDL cholesterol hypothesis?, Nat. Med., 18, 1344, 10.1038/nm.2937
Boden, 2011, Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy, N. Engl. J. Med., 365, 2255, 10.1056/NEJMoa1107579
Schwartz, 2012, Effect of dalcetrapib in patients with a recent acute coronary syndrome, N. Engl. J. Med., 367, 2089, 10.1056/NEJMoa1206797
Voight, 2012, Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study, Lancet, 380, 572, 10.1016/S0140-6736(12)60312-2
Dietschy, 2002, Control of cholesterol turnover in the mouse, J. Biol. Chem., 277, 3801, 10.1074/jbc.R100057200
Rader, 2009, The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis, J. Lipid Res., 50, S189, 10.1194/jlr.R800088-JLR200
Rosenson, 2012, Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport, Circulation, 125, 1905, 10.1161/CIRCULATIONAHA.111.066589
Temel, 2010, Biliary sterol secretion is not required for macrophage reverse cholesterol transport, Cell Metab., 12, 96, 10.1016/j.cmet.2010.05.011
Temel, 2012, Biliary and nonbiliary contributions to reverse cholesterol transport, Curr. Opin. Lipidol., 23, 85, 10.1097/MOL.0b013e3283508c21
Kruit, 2005, Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice, Gastroenterology, 128, 147, 10.1053/j.gastro.2004.10.006
Van der Velde, 2007, Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice, Gastroenterology, 133, 967, 10.1053/j.gastro.2007.06.019
Brown, 2008, Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss, J. Biol. Chem., 283, 10522, 10.1074/jbc.M707659200
van der Veen, 2009, Activation of liver X receptor stimulates trans-intestinal excretion of plasma cholesterol, J. Biol. Chem., 284, 19211, 10.1074/jbc.M109.014860
Vrins, 2009, PPARδ activation leads to increased trans intestinal cholesterol efflux, J. Lipid Res., 50, 2046, 10.1194/jlr.M800579-JLR200
van der Velde, 2008, Regulation of direct transintestinal cholesterol excretion in mice, Am. J. Physiol. Gastrointest. Liver Physiol., 295, G203, 10.1152/ajpgi.90231.2008
Jakulj, 2010, Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice, FEBS Lett., 584, 3625, 10.1016/j.febslet.2010.07.035
Le May, 2013, Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1, Arterioscler. Thromb. Vasc. Biol., 33, 1484, 10.1161/ATVBAHA.112.300263
Yu, 2002, Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion, Proc. Natl. Acad. Sci. U.S.A., 99, 16237, 10.1073/pnas.252582399
Graf, 2003, ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion, J. Biol. Chem., 278, 48275, 10.1074/jbc.M310223200
Wiersma, 2009, Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice, Hepatology, 50, 1263, 10.1002/hep.23112
Temel, 2007, Hepatic Niemann–Pick C1-like 1 regulates biliary cholesterol concentrations and is a target of ezetimibe, J. Clin. Invest., 117, 1968, 10.1172/JCI30060
Groen, 2008, Abcg5/8 independent biliary cholesterol excretion in Atp8b1-deficient mice, Gastroenterology, 134, 2091, 10.1053/j.gastro.2008.02.097
Sieber, 2012, Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro, Cell Metab., 15, 122, 10.1016/j.cmet.2011.11.011
Babin, 1997, Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development, Proc. Natl. Acad. Sci. U.S.A., 94, 8622, 10.1073/pnas.94.16.8622
Wang, 2013, Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy, Mol. Med. Rep., 8, 1472, 10.3892/mmr.2013.1691
Temel, 2010, A new framework for reverse cholesterol transport: non-biliary contributions to reverse cholesterol transport, World J. Gastroenterol., 16, 5946
Tietge, 2013, Role of TICE? Advancing the concept of transintestinal cholesterol excretion, Arterioscler. Thromb. Vasc. Biol., 33, 1452, 10.1161/ATVBAHA.113.301562
Van der Velde, 2010, Transintestinal cholesterol efflux, Curr. Opin. Lipidol., 21, 167, 10.1097/MOL.0b013e3283395e45
Kruit, 2006, Emerging roles of the intestine in control of cholesterol metabolism, World J. Gastroenterol., 12, 6429, 10.3748/wjg.v12.i40.6429
Brufau, 2011, Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion, Arterioscler. Thromb. Vasc. Biol., 31, 1726, 10.1161/ATVBAHA.108.181206
Jakulj, 2013, Intestinal cholesterol secretion: future clinical implications, Neth. J. Med., 71, 459
Cheng, 1959, Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction, Proc. Soc. Exp. Biol. Med., 101, 223, 10.3181/00379727-101-24890
Stanley, 1959, Serum cholesterol esters and intestinal cholesterol secretion and absorption in obstructive jaundice due to cancer, N. Engl. J. Med., 261, 368, 10.1056/NEJM195908202610802
Simmonds, 1967, Absorption of cholesterol from a micellular solution: intestinal perfusion studies in man, J. Clin. Invest., 46, 874, 10.1172/JCI105587
Deckelbaum, 1977, Failure of complete bile diversion and oral bile acid therapy in the treatment of homozygous familial hypercholesterolemia, N. Engl. J. Med., 296, 465, 10.1056/NEJM197703032960901
Hellman, 1955, Isotopic studies of plasma cholesterol of endogenous and exogenous origins, J. Clin. Invest., 34, 48, 10.1172/JCI103062
Rosenfeld, 1959, The relation of plasma and biliary cholesterol to bile acid synthesis in man, J. Clin. Invest., 38, 1334, 10.1172/JCI103908
Sperry, 1927, Lipid excretion IV. A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism, J. Biol. Chem., 71, 351, 10.1016/S0021-9258(18)84421-0
Pertsemlidis, 1973, Regulation of cholesterol metabolism in the dog I. Effects of complete bile diversion and of cholesterol feeding on absorption, synthesis, accumulation, and excretion rates measured during life, J. Clin. Invest., 52, 2353, 10.1172/JCI107424
Dietschy, 1968, The role of bile salts in controlling the rate of intestinal cholesterogenesis, J. Clin. Invest., 47, 286, 10.1172/JCI105725
Dietschy, 1965, Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control, J. Clin. Invest., 44, 1311, 10.1172/JCI105237
Bandsma, 1998, Contribution of newly synthesized cholesterol to rat plasma and bile determined by mass isotopomer distribution analysis: bile-salt flux promotes secretion of newly synthesized cholesterol into bile, Biochem. J., 329, 699, 10.1042/bj3290699
Voshol, 1998, Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice, Gastroenterology, 114, 1024, 10.1016/S0016-5085(98)70323-3
Wang, 2015, Relative roles of ABCG5/ABCG8 in liver and intestine, J. Lipid Res., 56, 319, 10.1194/jlr.M054544
Glomset, 1968, The plasma lecithin:cholesterol acyltransferase reaction, J. Lipid Res., 9, 155, 10.1016/S0022-2275(20)43114-1
Glomset, 1973, The metabolic role of lecithin: cholesterol acyltransferase: perspectives from pathology, Adv. Lipid Res., 11, 1, 10.1016/B978-0-12-024911-4.50008-8
Phillips, 2014, Molecular mechanisms of cellular cholesterol efflux, J. Biol. Chem., 289, 24020, 10.1074/jbc.R114.583658
Rothblatt, 2010, High-density lipoprotein heterogeneity and function in reverse cholesterol transport, Curr. Opin. Lipidol., 21, 229, 10.1097/MOL.0b013e328338472d
Dietschy, 1993, Role of the liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans, J. Lipid Res., 34, 1637, 10.1016/S0022-2275(20)35728-X
Acton, 1996, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science, 271, 518, 10.1126/science.271.5248.518
Krieger, 1999, Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI, Annu. Rev. Biochem., 68, 523, 10.1146/annurev.biochem.68.1.523
Osono, 1996, Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma, Proc. Natl. Acad. Sci. U.S.A., 93, 4114, 10.1073/pnas.93.9.4114
Jolley, 1998, Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration, J. Lipid Res., 39, 2142, 10.1016/S0022-2275(20)32469-X
Groen, 2001, Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL, J. Clin. Invest., 108, 843, 10.1172/JCI200112473
Xie, 2009, ABCA1 plays no role in centripetal movement of cholesterol from peripheral tissues to the liver and intestine in the mouse, J. Lipid Res., 50, 1316, 10.1194/jlr.M900024-JLR200
Hellerstein, 2014, Reverse cholesterol transport fluxes, Curr. Opin. Lipidol., 25, 40, 10.1097/MOL.0000000000000050
Briand, 2010, The use of dyslipidemic hamsters to evaluate drug-induced alterations in reverse cholesterol transport, Curr. Opin. Investig. Drugs, 11, 289
Castro-Perez, 2011, Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters, J. Lipid Res., 52, 1965, 10.1194/jlr.M016410
Barter, 2003, Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 23, 160, 10.1161/01.ATV.0000054658.91146.64
Timmins, 2005, Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I, J. Clin. Invest., 115, 1333, 10.1172/JCI200523915
Brunham, 2006, Intestinal ABCA1 directly contributes to HDL biogenesis in vivo, J. Clin. Invest., 116, 1052, 10.1172/JCI27352
Kunnen, 2012, Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis, J. Lipid Res., 53, 1783, 10.1194/jlr.R024513
Yazdanyar, 2011, Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport, Curr. Atheroscler. Rep., 13, 242, 10.1007/s11883-011-0172-5
Zannis, 2015, HDL biogenesis, remodeling, and catabolism, Handb. Exp. Pharmacol., 224, 53, 10.1007/978-3-319-09665-0_2
Mulya, 2008, Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL, J. Lipid Res., 49, 2390, 10.1194/jlr.M800241-JLR200
Ji, 2014, Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling, Arterioscler. Thromb. Vasc. Biol., 34, 1910, 10.1161/ATVBAHA.114.303533
Lee, 2004, Prebeta high density lipoprotein has two metabolic fates in human apolipoprotein A-I transgenic mice, J. Lipid Res., 45, 716, 10.1194/jlr.M300422-JLR200
Martinez, 2003, Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, 421, 75, 10.1038/nature01250
Fabre, 2010, P2Y13 receptor is critical for reverse cholesterol transport, Hepatology, 52, 1477, 10.1002/hep.23897
Serhan, 2013, Chronic pharmacologic activation of P2Y13 receptor in mice decreases HDL-cholesterol by increasing hepatic HDL uptake and bile acid secretion, Biochim. Biophys. Acta, 1831, 719, 10.1016/j.bbalip.2012.12.006
Jacquet, 2005, The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis, Cell. Mol. Life Sci., 62, 2508, 10.1007/s00018-005-5194-0
Silver, 2001, High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type I results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion, J. Biol. Chem., 276, 25287, 10.1074/jbc.M101726200
Burgos, 2004, Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells, Proc. Natl. Acad. Sci. U.S.A., 101, 3845, 10.1073/pnas.0400295101
Harder, 2007, SR-BI undergoes cholesterol-stimulated transcytosis to the bile canaliculus in polarized WIF-B cells, J. Biol. Chem., 282, 1445, 10.1074/jbc.M604627200
Wustner, 2004, Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells, J. Lipid Res., 45, 427, 10.1194/jlr.M300440-JLR200
Dikkers, 2013, Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice, Hepatology, 58, 293, 10.1002/hep.26316
Marshall, 2014, Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion, PLoS ONE, 9, e98953, 10.1371/journal.pone.0098953
Bura, 2013, Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice, J. Lipid Res., 54, 1567, 10.1194/jlr.M034454
Brufau, 2011, A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice, PLoS ONE, 6, e21576, 10.1371/journal.pone.0021576
Altmann, 2004, Niemann–Pick C1 like 1 protein is critical for intestinal cholesterol absorption, Science, 303, 1201, 10.1126/science.1093131
Sehayek, 2008, Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages, Arterioscler. Thromb. Vasc. Biol., 28, 1296, 10.1161/ATVBAHA.108.165803
Plump, 1994, Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse, Proc. Natl. Acad. Sci. U.S.A., 91, 9607, 10.1073/pnas.91.20.9607
Paszty, 1994, Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice, J. Clin. Invest., 94, 899, 10.1172/JCI117412
Choudhury, 2004, High-density lipoproteins retard the progression of atherosclerosis and favorably remodel lesions without suppressing indices of inflammation or oxidation, Arterioscler. Thromb. Vasc. Biol., 24, 1904, 10.1161/01.ATV.0000142808.34602.25
Benoit, 1999, Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models, Circulation, 99, 105, 10.1161/01.CIR.99.1.105
Belalcazar, 2003, Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia, Circulation, 107, 2726, 10.1161/01.CIR.0000066913.69844.B2
Van Craeyveld, 2011, Regression and stabilization of advanced murine atherosclerosis lesions: a comparison of LDL lowering and HDL raising gene transfer strategies, J. Mol. Med., 89, 555, 10.1007/s00109-011-0722-x
Miyazaki, 1995, Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits, Arterioscler. Thromb. Vasc. Biol., 15, 1882, 10.1161/01.ATV.15.11.1882
Tangirala, 1999, Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice, Circulation, 100, 1816, 10.1161/01.CIR.100.17.1816
Shah, 2001, High-dose recombinant apolipoprotein A-I (Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice. Potential implications for acute plaque stabilization, Circulation, 103, 3047, 10.1161/hc2501.092494
Badimon, 1990, Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit, J. Clin. Invest., 85, 1234, 10.1172/JCI114558
Rong, 2001, Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content, Circulation, 104, 2447, 10.1161/hc4501.098952
Feig, 2011, HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells, Proc. Natl. Acad. Sci. U.S.A., 108, 7166, 10.1073/pnas.1016086108
Navab, 2011, HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms, Nat. Rev. Cardiol., 8, 222, 10.1038/nrcardio.2010.222
Tall, 2012, Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis, Arterioscler. Thromb. Vasc. Biol., 32, 2547, 10.1161/ATVBAHA.112.300134
Shah, 2013, Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond, J. Lipid Res., 54, 2575, 10.1194/jlr.R035725
Vickers, 2014, HDL and cholesterol: life after the divorce?, J. Lipid Res., 55, 4, 10.1194/jlr.R035964
Bi, 2014, Liver ABCA1 deletion in LDLrKO mice does not impair macrophage reverse cholesterol transport or exacerbate atherogenesis, Arterioscler. Thromb. Vasc. Biol., 33, 2288, 10.1161/ATVBAHA.112.301110
Plosch, 2002, Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1, J. Biol. Chem., 277, 33870, 10.1074/jbc.M206522200
Tanigawa, 2009, Lecithin:cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo, Circulation, 120, 160, 10.1161/CIRCULATIONAHA.108.825109
Small, 2003, Role of ABC transporters in secretion of cholesterol from liver into bile, Proc. Natl. Acad. Sci. U.S.A., 100, 4, 10.1073/pnas.0237205100
Carey, 1978, The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man, J. Clin. Invest., 61, 998, 10.1172/JCI109025
Wu, 2004, Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice, J. Biol. Chem., 279, 22913, 10.1074/jbc.M402838200
Basso, 2007, Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited, J. Lipid Res., 48, 114, 10.1194/jlr.M600353-JLR200
Vrins, 2012, Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein, J. Lipid Res., 53, 2017, 10.1194/jlr.M022194
Marshall, 2014, Reduction of VLDL secretion decreases cholesterol excretion in Niemann–Pick C1-like 1 hepatic transgenic mice, PLoS ONE, 9, e84418, 10.1371/journal.pone.0084418
Dikkers, 2014, Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice, J. Lipid Res., 55, 816, 10.1194/jlr.M042986
Zhang, 2005, Hepatic overexpression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo, J. Clin. Invest., 115, 2870, 10.1172/JCI25327
Zelcer, 2009, LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor, Science, 325, 100, 10.1126/science.1168974
Herz, 1988, Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor, EMBO J., 7, 4119, 10.1002/j.1460-2075.1988.tb03306.x
Garcia-Miranda, 2010, Rat small intestine expresses the reelin–Disabled-1 signaling pathway, Exp. Physiol., 95, 498, 10.1113/expphysiol.2009.050682
Nijstad, 2011, Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice, Gastroenterology, 140, 1043, 10.1053/j.gastro.2010.11.055
Schultz, 2000, Role of LXRs in control of lipogenesis, Genes Dev., 14, 2832, 10.1101/gad.850400
Hong, 2014, The LXR–Idol axis differentially regulates plasma LDL levels in primates and mice, Cell Metab., 20, 910, 10.1016/j.cmet.2014.10.001
Yasuda, 2010, Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo, Arterioscler. Thromb. Vasc. Biol., 30, 781, 10.1161/ATVBAHA.109.195693
Lo Sasso, 2010, Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis, Cell Metab., 12, 187, 10.1016/j.cmet.2010.07.002
Briand, 2009, Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal cholesterol reabsorption of HDL-derived cholesterol, Clin. Transl. Sci., 2, 127, 10.1111/j.1752-8062.2009.00098.x
Maugeais, 2013, rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment, Atherosclerosis, 229, 94, 10.1016/j.atherosclerosis.2013.04.009
Uto-Kondo, 2014, Ezetimibe enhance macrophage reverse cholesterol transport in hamsters: contribution of hepatobiliary pathway, Biochim. Biophys. Acta, 1841, 1247, 10.1016/j.bbalip.2014.05.009
Davidson, 2013, Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans, Atherosclerosis, 230, 322, 10.1016/j.atherosclerosis.2013.08.006
Xie, 2013, Ezetimibe inhibits hepatic Niemann–Pick C1-like 1 to facilitate macrophage reverse cholesterol transport, Arterioscler. Thromb. Vasc. Biol., 33, 920, 10.1161/ATVBAHA.112.301187
Warrier, 2015, The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance, Cell Rep., 10.1016/j.celrep.2014.12.036
Brown, 2014, Metaorganismal nutrient metabolism as a basis of cardiovascular disease, Curr. Opin. Lipidol., 25, 48, 10.1097/MOL.0000000000000036
Wang, 2011, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, 472, 57, 10.1038/nature09922
Koeth, 2013, Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis, Nat. Med., 19, 576, 10.1038/nm.3145
Tang, 2013, Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk, N. Engl. J. Med., 368, 1575, 10.1056/NEJMoa1109400
Bennett, 2013, Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation, Cell Metab., 17, 49, 10.1016/j.cmet.2012.12.011
Koeth, 2014, γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO, Cell Metab., 20, 799, 10.1016/j.cmet.2014.10.006
Shih, 2015, Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis, J. Lipid Res., 56, 22, 10.1194/jlr.M051680