On Bayesian Inference for Proportional Hazards Models Using Noninformative Priors
Tóm tắt
In this article, we investigate the propertiesof the posterior distribution under the uniform improper priorfor two commonly used proportional hazards models; the Weibullregression model and the extreme value regression model. We allowthe observations to be right censored. We obtain sufficient conditionsfor the existence of the posterior moment generating functionof the regression coefficients. A dataset involving a lung cancerclinical trial and a simulation are presented to illustrate ourresults.
Tài liệu tham khảo
O. Barndorff-Nielson, Information and Exponential Families in Statistical Theory, New York: John Wiley, 1977.
J. O. Berger and J. M. Bernardo, “Estimating a product of means: Bayesian analysis with reference priors,” Journal of the American Statistical Association vol. 84 pp. 200-207, 1989.
J. O. Berger and J. M. Bernardo, “On the development of the reference priors,” in Bayesian Statistics 4, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds.), Oxford University Press, London, pp. 35-60, 1992a.
J. O. Berger and J. M. Bernardo, “Reference priors in a variance components problem,” Proceedings of the Indo-USA Workshop on Bayesian Analysis in Statistics and Econometrics, P. Goel (ed.), Springer, New York, pp. 323-340, 1992b.
J. O. Berger and L. R. Pericchi, “The Intrinsic Bayes Factor for Linear Models,” (with discussion), in Bayesian Statistics 5, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Oxford University Press, London, pp. 25-44, 1995.
J. O. Berger and L. R. Pericchi, “The Intrinsic Bayes factor for model selection and prediction,” Journal of the American Statistical Association vol. 91 pp. 109-122, 1996.
J. M. Bernardo, “Noninformative priors that do not exist,” Journal of Statistical Planning and Inference (with discussion) vol. 65 pp. 159-189, 1997.
J. M. Bernardo, “Nested Hypothesis Testing: The Bayesian Reference Criterion,” in Bayesian Statistics 6, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds.), Oxford University Press, London, pp. 49-64, 1998.
D. K. Dey, A. E. Gelfand, and F. Peng, “Overdispersed generalized linear models,” Journal of Statistical Planning and Inference vol. 64 pp. 93-107, 1997.
A. E. Gelfand and S. K. Sahu, “Identifiability, improper priors, and Gibbs sampling for generalized linear models,” Journal of American Statistical Association vol. 94 pp. 247-253, 1999.
W. R. Gilks and P. Wild, “Adaptive rejection sampling for Gibbs sampling,” Applied Statistics vol. 41 pp. 337-348, 1992.
J. G. Ibrahim and P. W. Laud, “On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior,” Journal of the American Statistical Association vol. 86 pp. 981-986, 1991.
H. Jeffreys, “An invariant form for the prior probability in estimation problems,” Proceedings of the Royal Society of London, Series A vol. 196 pp. 453-461, 1946.
R. E. Kass and L. Wasserman, “A reference Bayesian test for nested hypotheses and its relationship with the Schwarz criterion,” Journal of the American Statistical Association vol. 90 pp. 928-934, 1995.
J. F. Lawless, Statistical Models and Methods for Lifetime Data, New York: Wiley, 1982.
R. Natarajan and C. E. McCulloch, “A note on the existence of the posterior distribution for a class of mixed models for Binomial responses,” Biometrika vol. 82 pp. 639-643, 1995.
D. Sun, “A note on noninformative priors forWeibull distributions,” Journal of Statistical Planning and Inference vol. 61 pp. 319-338, 1997.
D. Sun, M. Ghosh, and A. P. Basu, “Bayesian analysis for a stress-strength system under noninformative priors,” The Canadian Journal of Statistics vol. 26 pp. 323-332, 1998.