A numerical investigation on the physical mechanisms of single track defects in selective laser melting
Tài liệu tham khảo
Gan, 2016, Practical support structures for selective laser melting, J. Mater. Process. Technol., 238, 474, 10.1016/j.jmatprotec.2016.08.006
Carter, 2014, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd., 615, 338, 10.1016/j.jallcom.2014.06.172
Qiu, 2013, Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V, Mater. Sci. Eng. A-Struct., 578, 230, 10.1016/j.msea.2013.04.099
Do, 2016, The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting, Virtual Phys. Prototyp., 11, 41, 10.1080/17452759.2016.1142215
Liu, 2016, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater., 113, 56, 10.1016/j.actamat.2016.04.029
Qiu, 2015, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater., 96, 72, 10.1016/j.actamat.2015.06.004
Fatemi, 2017, Experimental investigation of process parameters on layer thickness and density in direct metal laser sintering: a response surface methodology approach, Virtual Phys. Prototyp., 12, 133, 10.1080/17452759.2017.1293274
Dadbakhsh, 2012, Effect of selective laser melting layout on the quality of stainless steel parts, Rapid Prototyp. J., 18, 241, 10.1108/13552541211218216
Aboulkhair, 2014, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf., 1, 77
Garibaldi, 2016, Metallurgy of high-silicon steel parts produced using selective laser melting, Acta Mater., 110, 207, 10.1016/j.actamat.2016.03.037
Kasperovich, 2016, Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting (vol 105, pg 160, 2016), Mater Design, 112, 160
H. Gong, K. Rafi, N. Karthik, T. Starr, B. Stucker, Defect morphology in Ti–6Al–4V parts fabricated by selective laser melting and electron beam melting, in: 24rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, Aug, 2013, pp. 12–14.
King, 2014, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., 214, 2915, 10.1016/j.jmatprotec.2014.06.005
Panwisawas, 2015, On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting, Scr. Mater., 105, 14, 10.1016/j.scriptamat.2015.04.016
Zhou, 2015, 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT, Acta Mater., 98, 1, 10.1016/j.actamat.2015.07.014
Ge, 2017, Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns, Appl. Surf. Sci., 419, 150, 10.1016/j.apsusc.2017.05.033
Korner, 2011, Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol., 211, 978, 10.1016/j.jmatprotec.2010.12.016
Gürtler, 2013, Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method, Phys. Procedia, 41, 881, 10.1016/j.phpro.2013.03.162
Khairallah, 2016, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater., 108, 36, 10.1016/j.actamat.2016.02.014
Khairallah, 2014, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol., 214, 2627, 10.1016/j.jmatprotec.2014.06.001
Panwisawas, 2017, Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution, Comput. Mater. Sci., 126, 479, 10.1016/j.commatsci.2016.10.011
Y. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, in: International Solid Free Form Fabrication Symposium, Austin, 2015, pp. 1154–1165.
Yan, 2017, Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta Mater., 134, 324, 10.1016/j.actamat.2017.05.061
Kloss, 2011, LIGGGHTS–open source discrete element simulations of granular materials based on Lammps, Suppl. Proc.: Mater. Fabric. Prop. Charact. Model., 2, 781, 10.1002/9781118062142.ch94
Kamath, 2014, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W, Int. J. Adv. Manuf. Technol., 74, 65, 10.1007/s00170-014-5954-9
Parteli, 2016, Particle-based simulation of powder application in additive manufacturing, Powder Technol., 288, 96, 10.1016/j.powtec.2015.10.035
H. Jasak, A. Jemcov, Z. Tukovic, OpenFOAM: a C++ library for complex physics simulations, in: International workshop on coupled methods in numerical dynamics, IUC Dubrovnik, Croatia, 2007, pp. 1–20.
Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5
Rosler, 2011, Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments, Heat Mass Transf., 47, 1027, 10.1007/s00231-011-0866-9
Saldi, 2012
Cho, 2009, Weld pool flows during initial stages of keyhole formation in laser welding, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/17/175502
Lee, 2016, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Addit. Manuf., 12, 178
Cho, 2010, Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding, Comput. Mater. Sci., 49, 792, 10.1016/j.commatsci.2010.06.025
Cho, 2006, Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole, J. Phys. D Appl. Phys., 39, 5372, 10.1088/0022-3727/39/24/039
Li, 2005, Determination of the surface tension of liquid stainless steel, J. Mater. Sci., 40, 2191, 10.1007/s10853-005-1931-x
Kirillov, 2006
Li, 2012, Balling behavior of stainless steel and nickel powder during selective laser melting process, Int. J. Adv. Manuf. Technol., 59, 1025, 10.1007/s00170-011-3566-1
Wu, 2017, Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy, Int. J. Heat Mass Transf., 113, 730, 10.1016/j.ijheatmasstransfer.2017.05.125
Panwisawas, 2017, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: experimental and modelling, Acta Mater., 126, 251, 10.1016/j.actamat.2016.12.062
Eriksson, 2013, Melt behavior on the keyhole front during high speed laser welding, Opt. Laser Eng., 51, 735, 10.1016/j.optlaseng.2013.01.008
Trapp, 2017, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing, Appl. Mater. Today, 9, 341, 10.1016/j.apmt.2017.08.006
Bertoli, 2017, On the limitations of volumetric energy density as a design parameter for selective laser melting, Mater. Design, 113, 331, 10.1016/j.matdes.2016.10.037
Lin, 2017, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, Int. J. Heat Mass Transf., 108, 244, 10.1016/j.ijheatmasstransfer.2016.12.019
Huang, 2018, Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel, J. Mater. Process. Technol., 252, 421, 10.1016/j.jmatprotec.2017.10.011
Li, 2014, Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint, Int. J. Adv. Manuf. Technol., 72, 241, 10.1007/s00170-014-5609-x
Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004
Yadroitsev, 2007, Parametric analysis of the selective laser melting process, Appl. Surf. Sci., 253, 8064, 10.1016/j.apsusc.2007.02.088