Markov processes on partitions

Springer Science and Business Media LLC - Tập 135 - Trang 84-152 - 2005
Alexei Borodin1, Grigori Olshanski2
1Mathematics 253–37, Caltech, Pasadena, USA
2Dobrushin Mathematics Laboratory, Institute for Information Transmission Problems, Moscow, Russia

Tóm tắt

We introduce and study a family of Markov processes on partitions. The processes preserve the so-called z-measures on partitions previously studied in connection with harmonic analysis on the infinite symmetric group. We show that the dynamical correlation functions of these processes have determinantal structure and we explicitly compute their correlation kernels. We also compute the scaling limits of the kernels in two different regimes. The limit kernels describe the asymptotic behavior of large rows and columns of the corresponding random Young diagrams, and the behavior of the Young diagrams near the diagonal. Our results show that recently discovered analogy between random partitions arising in representation theory and spectra of random matrices extends to the associated time– dependent models.

Tài liệu tham khảo

Biane, P.: Quantum random walk on the dual of SU(n). Probab. Theory Rel. Fields. 89, 117–129 (1991) Biane, P.: Minuscule weights and random walks on lattices. Quant. Probab. Rel. Topics VII, 51–65 (1992) Borodin, A.: Harmonic analysis on the infinite symmetric group and the Whittaker kernel. St. Petersburg Math. J. 12 (5), 733–759 (2001) Borodin, A.: Riemann–Hilbert problem and the discrete Bessel kernel. Intern. Math. Research Notices (9) 467–494 arXiv:math.CO/9912093, 2000 Borodin, A., Okounkov, A.: A Fredholm determinant formula for Toeplitz determinants. Integral Equations Oper. Theory 37, 386–396 arXiv:math.CA/9907165, 2000 Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481–515 arXiv:math.CO/9905032, 2000 Borodin, A., Olshanski, G.: Point processes and the infinite symmetric group. Math. Research Lett. 5, 799–816 arXiv: math.RT/9810015, 1998 Borodin, A., Olshanski, G.: Distributions on partitions, point processes and the hypergeometric kernel. Comm. Math. Phys. 211, 335–358; arXiv:math.RT/9904010, 2000 Borodin, A., Olshanski, G. Harmonic functions on multiplicative graphs and interpolation polynomials. Electronic J. Comb. 7, #R28 math/9912124, 2000 Borodin, A., Olshanski, G.: Z–Measures on partitions, Robinson–Schensted–Knuth correspondence, and β=2 random matrix ensembles. In: Random matrix models and their applications (P. Bleher and A. Its, eds). Cambridge University Press. Mathematical Sciences Research Institute Publications 40, 71–94; arXiv:math.CO/9905189, 2001 Borodin, A., Olshanski, G.: Random partitions and the Gamma kernel. Adv. Math. 194 (1), 141–202; arXiv:math-ph/0305043, 2005 Borodin, A., Olshanski, G.: Z-measures on partitions and their scaling limits. European J. Combin. 26 (6), 795–834 arXiv:math-ph/0210048, 2005 Borodin, A., Olshanski, G.: Stochastic dynamics related to Plancherel measure on partitions. To appear in a collection dedicated to A. M. Vershik; arXiv:math-ph/0402064 Borodin, A., Olshanski, G.: Markov processes on partitions. arXiv:math-ph/0409075, version 1 Borodin, A., Rains, E.: Eynard–Mehta theorem, Schur process, and their pfaffian analogs. Preprint, arXiv:math-ph/0409059, 2004 Deift, P.: Integrable operators. In: Differential operators and spectral theory: M. Sh. Birman's 70th anniversary collection (V. Buslaev, M. Solomyak, D. Yafaev, eds.) American Mathematical Society Translations, ser. 2, v. 189, Providence, R.I.: AMS 69–84 (1999) Deift, P.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. Reprint of the 1998 original American Mathematical Society, Providence, RI 2000 Dyson, F. J.: A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962) Erdelyi, A.: (ed.) Higher transcendental functions. Bateman Manuscript Project, vol. I, McGraw-Hill, New York, 1953 Eynard, B., Mehta, M. L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A: Math. Gen. 31, 4449–4456 arXiv:cond-mat/9710230, 1998 Feller, W.: On the integro–differential equations of purely discontinuous Markoff processes. Trans. Amer. Math. Soc. 48, 488–515 (1940); erratum: 58, 474 (1945) Feller, W.: An introduction to probability theory and its applications. Vol. I, Wiley, New York, 1970 Feller, W.: An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1971 Fulman, J.: Stein's method and Plancherel measure of the symmetric group. Trans. Amer. Math. Soc. 357 (2), 555-570 arXiv:math.RT/0305423, 2005 Gantmacher, F. R.: The theory of matrices. Vol. 1, Transl. from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing Providence, RI 1998 Green, C., Nijenhuis, A., Wilf, H.: A probabilistic proof of a formula for the number of Young tableaux of a given shape. Adv. Math. 31, 104–109 (1979) Green, C., Nijenhuis, A., Wilf, H.: Another probabilistic method in the theory of Young tableaux J. Comb. Theory, Ser. A 37, 127–135 (1984) Grünbaum, F. A.: The bispectral problem: an overview. In: Special functions 2000: current perspective and future directions (J. Bustoz et al., eds). NATO Sci. Ser. II Math. Phys. Chem. 30, 129–140 Kluwer Acad. Publ. Dordrecht, 2001 Its, A. R., Izergin, A. G., Korepin, V. E., Slavnov, N. A.: Differential equations for quantum correlation functions. Intern. J. Mod. Phys. B4, 10037–1037 (1990) Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 arXiv:math.CO/9903134, 2000 Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2) 153 (1), 259–296 arXiv:math.CO/9906120, 2001 Johansson, K.: Non–intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 (2), 225–280 arXiv:math.PR/0011250, 2002 Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242, 277–329 math.PR/0206208, 2003 Johansson, K.: Random growth and determinantal processes . MSRI lecture, Sept. 2002 available from www.msri.org/publications/ln/msri/ 2002/rmt/johansson/1/index.html Johansson, K.: The Arctic circle boundary and the Airy process . Ann. Prob. 33, 1–30 arXiv:math.PR/0306216, 2005 Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Preprint, arXiv:math.PR/0409013, 2004 Karlin, S., McGregor, J.: The classification of birth and death processes . Trans. Amer. Math. Soc. 86, 366–400 (1957) Karlin, S., McGregor, J.: Linear growth, birth and death processes . J. Math. Mech. 7, 643–662, (1958) Karlin, S., McGregor, J.: Coincidence probabilities . Pacific J. Math. 9, 1141–1164 (1959) Kerov, S. V.: Anisotropic Young diagrams and Jack symmetric functions. Funktsional. Anal. i Prilozhen. 34 (1), 51–64 (2000); English translation: Funct. Anal. Appl. 34, 41–51 (2000) Kerov, S. V.: Asymptotic representation theory of the symmetric group and its applications in analysis. Amer. Math. Soc., Providence, RI, pp. 201 2003 Kerov, S., Olshanski, G., Vershik, A.: Harmonic analysis on the infinite symmetric group. A deformation of the regular representation . Comptes Rend. Acad. Sci. Paris, Sér. I 316, 773–778, 1993 Kerov, S., Olshanski, G., Vershik, A.: Harmonic analysis on the infinite symmetric group . Invent. Math. 158, 551–642 arXiv:math.RT/0312270, 2004 Koekoek, R., Swarttouw, R. F.: The Askey–scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98–17 available via http://aw.twi.tudelft.nl/~koekoek/askey.html, 1998 König, W., Connell, N. O', Roch, S.: Non–colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electronic J. Prob. 7, 1–24 (2002) T. Nagao and P. J. Forrester ,: Multilevel dynamical correlation function for Dyson's Brownian motion model of random matrices . Phys. Lett. A247, 42–46 (1998) Macdonald, I. G.:Symmetric functions and Hall polynomials. 2nd edition, Oxford University Press, 1995 Connell, N. O': Conditioned random walks and the RSK correspondence . J. Phys. A: Math. Gen. 36, 3049–3066 (2003) Okounkov, A.: Infinite wedge and measures on partitions . Selecta Math. 7, 1–25 math.RT/9907127, 2001 Okounkov, A.: SL(2) and z–measures In: Random matrix models and their applications (P. M. Bleher and A. R. Its, eds). Mathematical Sciences Research Institute Publications 40, Cambridge Univ. Press, 407–420 math.RT/0002136, 2001 Okounkov, A.: Symmetric functions and random partitions In: Symmetric functions 2001: Surveys of developments and perspectives (S. Fomin, ed). Proceedings of the NATO Advanced Study Institute (Cambridge, UK, June 25-July 6, 2001). Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 74, 223–252 arXiv:math.CO/0309074, (2002) Okounkov, A., Reshetikhin, N.: Correlation functions of Schur process with applications to local geometry of a random 3–dimensional Young diagram. J. Amer. Math. Soc. 16, 581–603 arXiv:math.CO/0107056, 2003 Olshanski, G.: Point processes related to the infinite symmetric group. In: The orbit method in geometry and physics: in honor of A. A. Kirillov (Ch. Duval et al., eds.), Progress in Mathematics 213, Birkhäuser, 349–393 arXiv:math.RT/9804086, 2003 Olshanski, G.: An introduction to harmonic analysis on the infinite symmetric group. In: Asymptotic combinatorics with applications to mathematical physics A. M. Vershik A European mathematical summer school held at the Euler Institute, St. Petersburg, Russia, July 9–20, 2001 Springer Lect. Notes Math. 1815, 127–160 arXiv:math.RT/0311369, 2003 Olshanski, G.: The problem of harmonic analysis on the infinite–dimensional unitary group . J. Funct. Anal. 205 (2), 464–524 arXiv:math.RT/0109193, 2003 Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process . J. Stat. Phys. 108, 1071–1106; arXiv:math.PR/0105240, 2002 Tracy, C. A., Widom, H.: Differential equations for Dyson processes. Preprint, arXiv:math.PR/0309082, 2003 Vershik, A. M.: Statistical mechanics of combinatorial partitions, and their limit shapes. Funct. Anal. Appl. 30, 90–105 (1996) Vershik, A. M., Kerov, S. V.: Asymptotic theory of characters of the symmetric group . Funct. Anal. Appl. 15, 246–255 (1981)