Obliquely Propagating Electron Acoustic Shock Waves in Magnetized Plasma
Tóm tắt
Obliquely propagating electron acoustic shock waves in plasma with stationary ions, cold and superthermal hot electrons are investigated in magnetized plasma. Employing reductive perturbation method, Korteweg-de Vries-Burgers equation (KdVB) is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdVB equation show the variation of shock waves structure (amplitude, velocity, and width) with different plasma parameters. Particle density (α), superthermal parameter (κ), electron temperature ratio (𝜃), kinetic viscosity (η0), obliqueness (kz), and strength of magnetic field (ωc) significantly modify the properties of the shock waves structures. The present investigation is useful to understand dissipative structures observed in space or laboratory plasma where multielectrons population with superthermal electrons are prevalent.
Tài liệu tham khảo
B.D. Fried, R.W. Gould, Phys. Fluids. 4, 139–147 (1961)
H. Derfler, T.C. Simonen, Phys. Fluids. 12, 269–278 (1969)
D. Henry, J.P. Treguier, J. Plasma Phys. 8, 311 (1972)
K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977)
R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984)
S.P. Gary, R.L. Tokar, Phys. Fluids. 28, 2439 (1985)
R.L. Mace, M.A. Helberg, Phys. Plasmas. 43, 239 (1990)
S. Ikezawa, Y. Nakamura, J. Phys. Soc. Japan. 50, 962–967 (1981)
M.F. Thomsen, H.C. Barr, S.P. Gary, W.C. Feldman, T.E. Cole, Geophys. Res. Lett. 88, 11 (1983)
W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. Mc Comas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, Geophys. Res. Lett. 88, 15 (1983)
S.D. Bale, P.J. Kellogg, D.E. Larson, R.P. Lin, K. Goetz, R.P. Lepping, Geophys. Res. Lett. 25, 2929 (1983)
G.S. Lakhina, S.V. Singh, A.P. Kakad, F. Verheest, R. Bharuthram, Nonlin. Processes Geophys. 15, 903–913 (2008)
S.V. Singh, G.S. Lakhina, Planet. Space Sci. 49, 107–114 (2001)
D. Schriver, M. Ashour Abdalla, Geophys. Res. Lett. 20, 475 (1993)
N. Dubouloz, R. Pottelete, M. Malingre, R.A. Treumann, Geophys. Res. Lett. 18, 155 (1991)
N. Dubouloz, R.A. Treumann, R. Pottelete, M. Malingre, Geophys. Res. Lett. 98, 17 (1993)
R. Pottelette, R.E. Ergun, R.A. Treumann, M. Berthomier, C.W. Carlson, J.P. McFadden, I. Roth, Geophys. Res. Lett. 26, 2629 (1999)
G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, Astron. Astrophys. Suppl Ser. 92, 267 (1992)
E.E. Antonova, N.O. Ermakova, Adv. Space Res. 42, 987 (2008)
V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)
T.S. Gill, A. Bains, C. Bedi, Phys. Plasmas. 17, 013701 (2010)
S. Sultana, I. Kourakis, M.A. Hellberg, Plasma Phys. Contr. Fusion. 54, 105016 (2012)
S. Bansal, M. Aggarwal, T.S. Gill, Brazilian J. Phys. https://doi.org/10.1007/s13538-018-0602-8 (2018)
S. Bansal, M. Aggarwal, T.S. Gill, J. Astrophys. Astron. 39, 27 (2018)
W. Moslem, S. Sabry, Chaos, Solitons and Fractals. 36, 3 (2008)
W. Masood, N. Imtiaz, M. Siddiq, Phys. Scr. 80, 015501 (2009)
T.S. Gill, A. Bains, C. Bedi, J. Phys. Conf. Ser. 208, 012040 (2010)
K. Javidan, H.R. Pakzad, Indian J. Phys. 87, 83 (2012)
B. Sahu, M. Tribeche, Phys. Plasmas. 19, 022304 (2012)
A.P. Misra, B. Sahu, Physica A. 421, 269 (2014)
M. Ferdousi, M.R. Miah, S. Sultana, A.A. Mamun, Brazilian J. Phys. 45, 244 (2015)
M.A. Hossen, M.M. Rahman, M.R. Hossen, A.A. Mamun, Brazilian J. Phys. 45, 444 (2015)
M. Dutta, N. Chakrabarti, R. Roychoudhury, M. Khan, Phys. Plasmas. 18, 102301 (2011)
S. Sultana, I. Kourakis, Eur. Phys. J D. 66, 100 (2012)
A. Panwar, C.M. Ryu, A. Bains, Phys. Plasmas. 21, 122105 (2014)
M. Shalaby, S.K. El-Labany, R. Sabry, L.S. El-sherif, Phys. Plasmas. 18, 062305 (2011)
M. Berthomier, R. Pottelette, M. Malingre, Y. Khotyaintsev, Phys. Plasmas. 7, 2987 (2000)
T.K. Baluku, M.A. Helberg, Phys. Plasmas. 15, 123705 (2008)
W. Malfliet, J. Computt. Appl. Math. 164, 529–541 (2004)
I. Kourakis, S. Sultana, F. Verheest, Astrophys. Space Sci. 338, 245 (2012)