Non-steady state electro-thermally coupled weather-dependent power flow technique for a geographically-traversed overhead-line capacity improvement

Electric Power Systems Research - Tập 177 - Trang 106017 - 2019
Saifal Talpur1, T.T. Lie1, R. Zamora1
1School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, New Zealand

Tài liệu tham khảo

Davis, 1977, A new thermal rating approach: the real time thermal rating system for strategic overhead conductor transmission lines — part I: general description and justification of the real time thermal rating system, IEEE Trans. Power Appar. Syst., 96, 803, 10.1109/T-PAS.1977.32393 IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors, IEEE Std 738-2012 (Revision of IEEE Std 738-2006 - Incorporates IEEE Std 738-2012 Cor 1-2013), vol., no., pp.1-72, 23 Dec. 2013. 10.1109/IEEESTD.2013.6692858. Davis, 1977, A new thermal rating approach: the real time thermal rating system for strategic overhead conductor transmission lines — Part II: steady state thermal rating program, IEEE Trans. Power Appar. Syst., 96, 810, 10.1109/T-PAS.1977.32394 Poli, 2019, The possible impact of weather uncertainty on the Dynamic Thermal Rating of transmission power lines: A Monte Carlo error-based approach, Electr. Power Syst. Res., 170, 338, 10.1016/j.epsr.2019.01.026 Viafora, 2019, Day-ahead dispatch optimization with dynamic thermal rating of transformers and overhead lines, Electr. Power Syst. Res., 171, 194, 10.1016/j.epsr.2019.02.026 Dawson, 2018, Applicability of dynamic thermal line rating for long lines, IEEE Trans. Power Deliv., 33, 719, 10.1109/TPWRD.2017.2691671 Banakar, 2005, Electrothermal coordination part I: theory and implementation schemes, IEEE Trans. Power Syst., 20, 798, 10.1109/TPWRS.2005.846196 Alguacil, 2005, Electrothermal coordination part II: case studies, IEEE Trans. Power Syst., 20, 1738, 10.1109/TPWRS.2005.857836 Wang, 2010, Study on electro-thermal coupling optimal power flow model and its simplification, 1 Kubis, 2017, Application of a combined electro-thermal overhead line model in power flow and time-domain power system simulations, IET Gener. Transm. Distrib., 11, 2041, 10.1049/iet-gtd.2016.1626 Shu, 2017, Optimal power flow in distribution network considering spatial electro-thermal coupling effect, IET Gener. Transm. Distrib., 11, 1162, 10.1049/iet-gtd.2016.0909 Jerrell, 1988, Critical span analysis of overhead conductors, IEEE Trans. Power Deliv., 3, 1942, 10.1109/61.194004 Muñoz, 2019, Case study of the increase in capacity of transmission lines in the Chilean system through probabilistic calculation model based on dynamic thermal rating, Electr. Power Syst. Res., 170, 35, 10.1016/j.epsr.2019.01.008 2014 Chatzipanagiotou, 2019, Dynamic thermal analysis of a power line by simplified RC model networks: theoretical and experimental analysis, Int. J. Electr. Power Energy Syst., 106, 288, 10.1016/j.ijepes.2018.10.009 Theodosoglou, 2017, Electrothermal analysis and temperature fluctuations’ prediction of overhead power lines, Int. J. Electr. Power Energy Syst., 87, 198, 10.1016/j.ijepes.2016.07.002 Liu, 2016, Reliability evaluation of distribution networks incorporating cable electro-thermal properties, 1 Kopsidas, 2016, Power network reliability evaluation framework considering OHL electro-thermal design, IEEE Trans. Power Syst., 31, 2463, 10.1109/TPWRS.2015.2443499 Olsen, 2013, Electrothermal coordination in cable based transmission grids, IEEE Trans. Power Syst., 28, 4867, 10.1109/TPWRS.2013.2278040 Dong, 2014, Calculation of power transfer limit considering electro-thermal coupling of overhead transmission line, IEEE Trans. Power Syst., 29, 1503, 10.1109/TPWRS.2013.2296553 Kubis, 2016, Synchrophasor based thermal overhead line monitoring considering line spans and thermal transients, IET Gener. Transm. Distrib., 10, 1232, 10.1049/iet-gtd.2015.0852 Dong, 2019, Estimating the wind power integration threshold considering electro-thermal coupling of overhead transmission lines, IEEE Trans. Power Syst., 34, 3349, 10.1109/TPWRS.2019.2906291 Deb, 2017 Morgan, 1997 Groen, 2017, Methods for global sensitivity analysis in life cycle assessment, Int. J. Life Cycle Assess., 22, 1125, 10.1007/s11367-016-1217-3 Xu, 2008, Uncertainty and sensitivity analysis for models with correlated parameters, Reliab. Eng. Syst. Saf., 93, 1563, 10.1016/j.ress.2007.06.003 Saltelli, 2010, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259, 10.1016/j.cpc.2009.09.018 Rodgers, 1988, Thirteen ways to look at the correlation coefficient, Am. Stat., 42, 59, 10.2307/2685263 Athay, 1979, A practical method for the direct analysis of transient stability, IEEE Trans. Power Appar. Syst., PAS-98, 573, 10.1109/TPAS.1979.319407 National Institute of Water and Atmospheric Research (NIWA). Available: https://cliflo.niwa.co.nz/. (Accessed 31 May 2019). Ausgrid, 2015 Zimmerman, 2011