Modeling uncertainty in flow simulations via generalized polynomial chaos
Tóm tắt
Từ khóa
Tài liệu tham khảo
Workshop on Validation and Verification of Computational Mechanics Codes, Technical Report, Caltech, December, 1998
Workshop on Predictability of Complex Phenomena, Los Alamos, 6–8 December 1999, Technical Report
Workshop on Decision Making Under Uncertainty, IMA, 16–17 September 1999, Technical Report
Oden, 1994, An a posteriori error estimate for finite element approximations of the Navier–Stokes equations, Comput. Meth. Appl. Mech. Eng., 111, 185, 10.1016/0045-7825(94)90045-0
Machiels, 2001, A posteriori finite element output bounds for the incompressible Navier–Stokes equations; application to a natural convection problem, J. Comput. Phys., 172, 401, 10.1006/jcph.2001.6769
R.G. Hills and T.G. Trucano, Statistical validation of engineering and scientific models: background, Technical Report SAND99-1256, Sandia National Laboratories, 1999
M. Shinozuka and G. Deodatis, Response variability of stochastic finite element systems, Technical Report, Department of Civil Engineering, Columbia University, New York, 1986
Ghanem, 1991
Wiener, 1958
Meecham, 1964, Wiener–Hermite expansion in model turbulence at large Reynolds numbers, Phys. Fluids, 7, 1178, 10.1063/1.1711359
Siegel, 1965, Wiener–Hermite expansion in model turbulence in the late decay stage, J. Math. Phys., 6, 707, 10.1063/1.1704328
Meecham, 1968, Use of the Wiener–Hermite expansion for nearly normal turbulence, J. Fluid Mech., 32, 225, 10.1017/S0022112068000698
Orszag, 1967, Dynamical properties of truncated Wiener–Hermite expansions, Phys. Fluids, 10, 2603, 10.1063/1.1762082
Crow, 1970, Relationship between a Wiener–Hermite expansion and an energy cascade, J. Fluid Mech., 41, 387, 10.1017/S0022112070000654
Chorin, 1974, Gaussian fields and random flow, J. Fluid Mech., 85, 325
R. Askey, J. Wilson, Some basic hypergeometric polynomials that generalize Jacobi polynomials, Memoirs of the American Mathematical Society, AMS, Providence, RI, 1985, p. 319
Szegö, 1939
Beckmann, 1973
Chihara, 1978
R. Koekoek and R.F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Technical Report 98-17, Department of Technical Mathematics and Informatics, Delft University of Technology, 1998
Schoutens, 2000
Cameron, 1947, The orthogonal development of nonlinear functionals in series of Fourier– Hermite functionals, Ann. Math., 48, 385, 10.2307/1969178
Ghanem, 1999, Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties, ASCE J. Eng. Mech., 125, 26, 10.1061/(ASCE)0733-9399(1999)125:1(26)
Ghanem, 1999, Ingredients for a general purpose stochastic finite element formulation, Comput. Meth. Appl. Mech. Eng., 168, 19, 10.1016/S0045-7825(98)00106-6
Ogura, 1972, Orthogonal functionals of the Poisson process, IEEE Trans. Info. Theory, 18, 473, 10.1109/TIT.1972.1054856
Loéve, 1977
Karniadakis, 1991, High-order splitting methods for incompressible Navier–Stokes equations, J. Comput. Phys., 97, 414, 10.1016/0021-9991(91)90007-8
Karniadakis, 1999
Williamson, 1996, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477, 10.1146/annurev.fl.28.010196.002401
Kaiktsis, 1996, Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step, J. Fluid Mech., 321, 157, 10.1017/S0022112096007689
Karniadakis, 1995, Towards an error bar in CFD, J. Fluids Eng., 117
D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF, SIAM, Philadelphia, PA, 1977
Boyd, 1980, The rate of convergence of Hermite function series, Math. Comput., 35, 1039, 10.1090/S0025-5718-1980-0583508-3