Establishment and clinical application of SARS-CoV-2 catch column
Tóm tắt
A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).
Tài liệu tham khảo
Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat Commun. 2020;11(1):5493.
Hagman K, Hedenstierna M, Gille-Johnson P, Hammas B, Grabbe M, Dillner J, et al. SARS-CoV-2 RNA in serum as predictor of severe outcome in COVID-19: a retrospective cohort study. Clin Infect Dis. 2021;73(9):e2995–3001.
Jacobs JL, Bain W, Naqvi A, Staines B, Castanha PMS, Yang H, et al. SARS-CoV-2 viremia is associated with COVID-19 severity and predicts clinical outcomes. Clin Infect Dis. 2022;74(9):1525–33.
Li Y, Schneider AM, Mehta A, Sade-Feldman M, Kays KR, Gentili M, et al. SARS-CoV-2 viremia is associated with distinct proteomic pathways and predicts COVID-19 outcomes. J Clin Invest. 2021;131(13):e148635.
Rodríguez-Serrano DA, Roy-Vallejo E, Zurita Cruz ND, Martín Ramírez A, Rodríguez-García SC, Arevalillo-Fernández N, et al. Detection of SARS-CoV-2 RNA in serum is associated with increased mortality risk in hospitalized COVID-19 patients. Sci Rep. 2021;11(1):13134.
Tang K, Wu L, Luo Y, Gong B. Quantitative assessment of SARS-CoV-2 RNAemia and outcome in patients with coronavirus disease 2019. J Med Virol. 2021;93(5):3165–75.
Gaziano L, Giambartolomei C, Pereira AC, Gaulton A, Posner DC, Swanson SA, et al. Actionable druggable genome-wide mendelian randomization identifies repurposing opportunities for COVID-19. Nat Med. 2021;27(4):668–76.
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;584(7819):120–4.
Zoufaly A, Poglitsch M, Aberle JH, Hoepler W, Seitz T, Traugott M, et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir Med. 2020;8(11):1154–8.
Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV Antibody combination and outcomes in outpatients with Covid-19. N Engl J Med. 2021;385(23): e81.
Katagiri D, Ishikane M, Asai Y, Izumi S, Takasaki J, Katsuoka H, et al. Direct hemoperfusion using a polymyxin B-immobilized polystyrene column for COVID-19. J Clin Apheresis. 2021;36(3):313–21.
Schmidt JJ, Borchina DN, Van’t Klooster M, Bulhan-Soki K, Okioma R, Herbst L, et al. Interim analysis of the COSA (COVID-19 patients treated with the Seraph® 100 Microbind® Affinity filter) registry. Nephrol Dial Transplant. 2022;37(4):673–80.
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.
Hashizume M, Gonzalez G, Ono C, Takashima A, Iwasaki M. Population-specific ACE2 single-nucleotide polymorphisms have limited impact on SARS-CoV-2 infectivity in vitro. Viruses. 2021;13(1):67.
Yoshida S, Ono C, Hayashi H, Fukumoto S, Shiraishi S, Tomono K, et al. SARS-CoV-2-induced humoral immunity through B cell epitope analysis in COVID-19 infected individuals. Sci Rep. 2021;11(1):5934.
Goodman M, Chorev M. On the concept of linear modified retro-peptide structures. Acc Chem Res. 1979;12(1):1–7.
Li C, Pazgier M, Li J, Liu M, Zou G, Li Z, et al. Limitations of peptide retro-inverso isomerization in molecular mimicry. J Biol Chem. 2010;285(25):19572–81.