The effect of temperature on growth, indole alkaloid accumulation and lipid composition of Catharanthus roseus cell suspension cultures
Tóm tắt
Cell suspension cultures of Catharanthus roseus were used to study the effect of temperature on plant cell lipids and indole alkaloid accumulation. Lowering the cultivation temperature increased the total fatty acid content per cell dry weight relative to that at higher temperatures, mainly because of increased accumulation of unsaturated C18 acids. In addition, an increase in the relative proportion of phosphatidylcholine and phosphatidylethanolamine was observed. Within individual lipids, the degree of unsaturation was increased and the mean fatty acid chain length decreased with reducing temperature. These changes may be interpreted as modifying the cell membrane fluidity to keep it optimal for growth and metabolism at each temperature. In spite of membrane modifications, the indole alkaloid content of the cells or the medium was not affected by temperature change.
Tài liệu tham khảo
Bishop DG, Kenrick JR, Bayston JH, Macpherson AS Johns SR (1980) Biochim Biophys Acta 602:248–259.
Bligh EG, Dyer WJ (1959) Can J. Biochem Physiol. 37:912–917.
Courtois D, Guem J (1980) Plant Sci Lett 17:473–482.
De Silva NS, Fowler MW (1976) Phytochem. 15:1735–1740.
Gamborg OL, Miller RA, Ojima K (1968) Exp. Cell. Res. 10:205–232.
Gawer M, Trapy F, Guem J, Mazliak P (1980) In: Mazliak P, Benveniste P, Costes C, Douce R. (eds.) Biogenesis and Function of Plant Lipids, Elsevier, North-Holland Biomedical Press, pp. 199–202.
Gawer M, Sansonetti A, Mazliak P (1983) Phytochem. 22:855–859.
Harwood JL (1980) In: Stumpf PK, Conn EE (eds.) The Biochemistry of Plants, Vol 4. Academic Press, Inc., New York, pp. 2–55.
Kates M, Wilson AC, De La Roche AI (1979) In: Appelqvist LA, Liljenberg C (eds.) Advances in the Biochemistry and Physiology of Plant Lipids, Elsevier, North-Holland Biomedical Press, pp. 329–342.
Lag MA, Meza-Basso L, Fernandez J, Cristi R, Romero M (1991) Phytochem. 30:763–768.
Lepage M (1967) Lipids 2:244–250.
Levitt J (1980) Responses of Plants to Environmental Stresses. Academic Press, New York, London.
Lynch DV, Thompson GA, JR (1982) Plant Physiol. 69:1369–1375.
MacCarthy JJ, Stumpf PK (1980a) Planta 147:384–388.
MacCarthy JJ, Stumpf PK (1980b) Planta 147:389–395.
Mazliak P (1979) In: Lyons JM, Graham D, Raison JK (eds.) Low Temperature Stress in Crop Plants. The Role of the Membrane, Academic Press, New York, pp 391–404.
Morris P (1986) Plant Cell Rep. 5:427–429.
Naaranlahti T, Lapinjoki SP, Huhtikangas A, Toivonen L, Kurten U, Kauppinen V, Lounasmaa M (1989) Planta Med. 55:155–157.
Neidleman SL (1987) Biotechnology and Genetic Engineering Reviews, 5:245–268.
Oldfield E, Chapman D (1972) FEBS Lett. 23:285–297.
Radwan SS, Grosse-Oetringhaus S, Mangold HK (1978) Chem Phys Lipids 22:177–184.
Rebeille F, Bligny R, Douce R (1980) Biochim. Biophys. Acta 620:1–5.
Rosenqvist H, Laakso S (1991) Phytochem. 30:2161–2164.
Stumpf PK (1980) In: Stumpf PK, Conn EE (eds) The Biochemistry of Plants, Vol 4. Academic Press, Inc., New York, pp. 177–204.
Suutari M, Liukkonen K, Laakso S (1990) J. Gen. Microbiol. 136:1469–1476.
Svennerholm L (1956) J. Neurochem. 1:42–45.
Toivonen L, Ojala M, Kauppinen V (1991) Biotechnol Bioeng. 37:673–680.
Weber N, Mangold HK (1988) In: Cell culture and Somatic Cell Genetics of Plants, Vol 5., Academic Press, New York, pp. 509–534.
Vereshchagin AG, Trunova TI, Shayakhmetova IS, Tsydendambaev VD (1990) Plant Physiol. Biochem. 28:623–630.
Widholm L (1972) Stain Technol 47:189- 192.
Willemot C, Pelletier L (1980) Can.J.Plant Sci. 60:349–355.
Wright DC, Janick J, Hasegawa PM (1983) Lipids 18:863–867.
Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW, Deus B (1977) In: Barz W, Reinhard E, Zenk MH (ed) Plant Tissue Culture and its Biotechnological Application Springer-Verlag, Berlin, pp. 27–43.