Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC)

Cement and Concrete Composites - Tập 66 - Trang 47-56 - 2016
Mo Alkaysi1, Sherif El-Tawil1, Zhichao Liu1, Will Hansen1
1Department of Civil & Environmental Engineering, University of Michigan, 2350 Hayward, G.G. Brown, Ann Arbor, MI 48109-2125, USA

Tài liệu tham khảo

Graybeal, 2013 Holschemacher, 2005, Economic mix design ultra high-strength concrete, vol. II, 1,133 Castro, 2009, Review: concepts of particle dispersion and packing for special concretes production, Cerâmica, 55, 18, 10.1590/S0366-69132009000100003 de Larrard, 1994, Optimization of ultra-high-performance concrete by the use of a packing model, Cem. Concr. Res., 24, 997, 10.1016/0008-8846(94)90022-1 Wille, 2011, Optimizing ultra-high-performance fiber reinforced concrete, Concr. Int., 33, 35 Kay, 2011, Strain-hardening UHP-FRC with low fiber contents, Mater. Struct., 44.3, 583 Bonneau, 1997, Mechanical properties and durability of two industrial reactive powder concretes, ACI Mater. J., 94, 286 Ahlborn, 2008, Durability and strength characterization of ultra-high performance concrete under variable curing regimes, 197 Acker, 2004, Ductal® technology: a large spectrum of properties, a wide range of applications, 11 Piérard, 2012, Evaluation of durability parameters of UHPC using accelerated lab tests, 371 Graybeal, 2006 Yazıcı, 2008, The effect of silica fume and high-volume class C Fly Ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete, Constr. Build. Mater., 22, 456, 10.1016/j.conbuildmat.2007.01.002 Alexander, 1999, Durability performance of concrete containing condensed silica fume, Cem. Concr. Res., 29, 917, 10.1016/S0008-8846(99)00064-2 Willie, 2011, Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 Ksi): a simpler way, ACI Mater. J., 108, 46 Sukhoon, 2015, Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension, Cem. Concr. Compos., 56, 15, 10.1016/j.cemconcomp.2014.10.002 Cheng, 2005, Influence of GGBS on durability and corrosion behavior of reinforced concrete, Mater. Chem. Phys., 93, 404, 10.1016/j.matchemphys.2005.03.043 Setzer, 2004, Test methods of frost resistance of concrete: CIF-Test: capillary suction, internal damage and freeze thaw test)-Reference method and alternative methods A and B, Mater. Struct., 37, 743, 10.1007/BF02480521 ASTM Standard C457, 2009, 14 ASTM Standard C1202, 2009, 6 Chia, 2002, Water permeability and chloride penetrability of high-strength lightweight aggregate concrete, Cem. Concr. Res., 32, 639, 10.1016/S0008-8846(01)00738-4 AASHTO T 277–86, 1990 Tanesi, 2007, Freeze-thaw resistance of concrete with marginal air content, Transp. Res. Rec., 2020-1, 61, 10.3141/2020-08 Andreasen, 1930, Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten), Kolloid-Zeitschrift, 50, 217, 10.1007/BF01422986 HJH Brouwers, HJ Radix, Self-compacting concrete: the role of the particle size distribution. In: The First International Symposium on Design, Performance and Use of Self-consolidating Concrete (SCC’2005) Changsha, Hunan, China; p. 109–118. 200. Borges, 2014, Andreasen particle packing method on the development of geopolymer concrete for civil engineering, J. Mater. Civ. Eng., 26, 692, 10.1061/(ASCE)MT.1943-5533.0000838 Liu, 2014, Frost deterioration in concrete due to deicing salt exposure: mechanism, mitigation conceptual surface scaling model, Diss. U Mich.