Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations

Ju Liu1, Chad M. Landis1,2, Hector Gomez3, Thomas J.R. Hughes1,2
1Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712, USA
2Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 East 24th Street, 1 University Station C0600, Austin, TX 78712, USA
3Departamento de Métodos Matemáticos, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain

Tài liệu tham khảo

Kuiper, 1981 Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5 Osher, 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12, 10.1016/0021-9991(88)90002-2 Anderson, 1998, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139, 10.1146/annurev.fluid.30.1.139 Rowlinson, 1979, Translation of J.D. van der Waals’ The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20, 200, 10.1007/BF01011513 Korteweg, 1901, Arch. Néerl., 6, 1 Truesdell, 1965 Dunn, 1985, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88, 95, 10.1007/BF00250907 Cahn, 1958, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102 Oden, 2010, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 477, 10.1142/S0218202510004313 Liu, 2013, Isogeometric analysis of the advective Cahn-Hilliard equation: spinodal decomposition under shear flow, J. Comput. Phys., 242, 321, 10.1016/j.jcp.2013.02.008 Vilanova, 2014, Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis, Comput. Mech., 53, 449, 10.1007/s00466-013-0958-0 Gomez, 2013, Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium, J. Comput. Phys., 238, 217, 10.1016/j.jcp.2012.12.018 Dedè, 2012, Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng., 19, 1, 10.1007/s11831-012-9075-z Gurtin, 1996, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178, 10.1016/0167-2789(95)00173-5 Gurtin, 2000, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, J. Mech. Phys. Solids, 48, 898, 10.1016/S0022-5096(99)00059-9 Wilson, 2013, A phase-field model for fracture in piezoelectric ceramics, Int. J. Fract, 183, 135, 10.1007/s10704-013-9881-9 Maraldi, 2011, Phase field model for coupled displacive and diffusive microstructural processes under thermal loading, J. Mech. Phys. Solids, 59, 1596, 10.1016/j.jmps.2011.04.017 Su, 2007, Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning, J. Mech. Phys. Solids, 55, 280, 10.1016/j.jmps.2006.07.006 Coleman, 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167, 10.1007/BF01262690 Liu, 2014 Son, 2008, Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes, Int. J. Heat Mass Transfer, 51, 2566, 10.1016/j.ijheatmasstransfer.2007.07.046 Badillo, 2012, Quantitative phase-field modeling for boiling phenomena, Phys. Rev. E, 86, 10.1103/PhysRevE.86.041603 Dhir, 2013, Numerical simulation of pool boiling: a review, J. Heat Transfer, 135, 1, 10.1115/1.4023576 Juric, 1998, Computations of boiling flows, Int. J. Multiph. Flow, 24, 387, 10.1016/S0301-9322(97)00050-5 Onuki, 2007, Dynamic van der Waals theory, Phys. Rev. E, 75, 10.1103/PhysRevE.75.036304 Lakkaraju, 2013, Heat transport in bubbling turbulent convection, Proc. Natl. Acad. Sci. USA, 110, 9237, 10.1073/pnas.1217546110 Hughes, 1986, A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54, 223, 10.1016/0045-7825(86)90127-1 Shakib, 1991, A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141, 10.1016/0045-7825(91)90041-4 Hughes, 2010, Stabilized methods for compressible flows, J. Sci. Comput., 43, 343, 10.1007/s10915-008-9233-5 Liu, 2013, Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations, J. Comput. Phys., 248, 47, 10.1016/j.jcp.2013.04.005 Gomez, 2011, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230, 5310, 10.1016/j.jcp.2011.03.033 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Dedè, 2015, Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation, Comput. Methods Appl. Mech. Engrg., 284, 320, 10.1016/j.cma.2014.09.013 Lipton, 2010, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Engrg., 199, 357, 10.1016/j.cma.2009.01.022 Evans, 2009, n-widths, sup-infs and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726, 10.1016/j.cma.2009.01.021 Bueno, 2014, Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion, Comput. Mech., 55, 1105, 10.1007/s00466-014-1098-x Gomez, 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003 Gomez, 2010, Isogeometric anslysis of the isothermal Navier–Stokes-Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 1828, 10.1016/j.cma.2010.02.010 Cottrell, 2009 Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036 Hsu, 2015, An interactive geometry modeling and parametric design platform for isogeometric analysis, Comput. Math. Appl., 10.1016/j.camwa.2015.04.002 Scott, 2012, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206, 10.1016/j.cma.2011.11.022 Evans, 2013, Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations, Math. Models Methods Appl. Sci., 23, 671, 10.1142/S0218202512500583 Evans, 2013, Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations, Math. Models Methods Appl. Sci., 23, 1421, 10.1142/S0218202513500139 Evans, 2013, Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations, J. Comput. Phys., 241, 141, 10.1016/j.jcp.2013.01.006 Casquero, 2015, A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines, Internat. J. Numer. Methods Engrg. Schillinger, 2013, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017 Gomez, 2014, Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044 Schillinger, 2015, Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583, 10.1016/j.cma.2014.09.032 Gurtin, 2009 Schroeder, 2000 Lowengrub, 1998, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454, 2617, 10.1098/rspa.1998.0273 Marsden, 1994 Panton, 2005 Kim, 2005, Phase field modeling and simulation of three-phase flows, Interfaces Free Bound., 7, 435, 10.4171/IFB/132 National Institute of Standards and Technology. Thermophysical Properties of Fluid Systems, 2012. http://webbook.nist.gov/chemistry/fluid/, (accessed 15.07.12). Beattie, 1927, A new equation of state for fluids. I. Application to gaseous ethyl ether and carbon dioxide, J. Am. Chem. Soc., 49, 1665, 10.1021/ja01406a005 Benedict, 1940, An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane, J. Chem. Phys., 8, 334, 10.1063/1.1750658 Serrin, 2008, The area rule for simple fluid phase transitions, J. Elasticity, 90, 129, 10.1007/s10659-007-9136-y D.C. Johnson, Thermodynamic properties of the van der waals fluid, 2014. arXiv preprint arXiv:1402.1205. Barth, 2006, On the role of involutions in the discontinuous galerkin discretization of maxwell and magnetohydrodynamic systems, 69 Bova, 1996, An entropy variable formulation and applications for the two-dimensional shallow water equations, Internat. J. Numer. Methods Fluids, 23, 29, 10.1002/(SICI)1097-0363(19960715)23:1<29::AID-FLD411>3.0.CO;2-U Chalot, 1990, Symmetrization of conservation laws with entropy for high-temperature hypersonic computations, Comput. Syst. Eng, 1, 495, 10.1016/0956-0521(90)90032-G Hughes, 1987 D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. www.math.utah.edu/~eyre/research/methods/stable.ps. Tierra, 2015, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Methods Eng., 22, 269, 10.1007/s11831-014-9112-1 Wise, 2010, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44, 38, 10.1007/s10915-010-9363-4 Scriven, 1960, The Marangoni effects, Nature, 187, 186, 10.1038/187186a0 McGrew, 1966, Marangoni flow: an additional mechanism in boiling heat transfer, Science, 153, 1106, 10.1126/science.153.3740.1106 Mills, 1998, Marangoni effects in welding, Philos. Trans. R. Soc. Lond. Ser. A, 356, 911, 10.1098/rsta.1998.0196 Young, 1959, The motion of bubbles in a vertical temperature gradient, J. Fluid Mech., 6, 350, 10.1017/S0022112059000684 Antanovskii, 1995, A phase field model of capillarity, Phys. Fluids, 7, 747, 10.1063/1.868598 Haj-Hariri, 1997, Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers, Phys. Fluids, 9, 845, 10.1063/1.869182 Jasnow, 1996, Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8, 660, 10.1063/1.868851 Tryggvason, 2001, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708, 10.1006/jcph.2001.6726 Onuki, 2005, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.054501 Onuki, 2005, Droplet motion with phase change in a temperature gradient, Phys. Rev. E, 72, 10.1103/PhysRevE.72.066304 Dhir, 1998, Boiling heat transfer, Annu. Rev. Fluid Mech., 30, 365, 10.1146/annurev.fluid.30.1.365 Rohsenow, 1971, Boiling, Annu. Rev. Fluid Mech., 3, 211, 10.1146/annurev.fl.03.010171.001235 Son, 1997, Numerical simulation of saturated film boiling on a horizontal surface, J. Heat Transfer, 119, 525, 10.1115/1.2824132 Welch, 2000, A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 160, 662, 10.1006/jcph.2000.6481 Schillinger, 2012, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249–252, 116, 10.1016/j.cma.2012.03.017