Aerial image formation of quantum lithography for diffraction limit

Current Applied Physics - Tập 12 - Trang 1566-1574 - 2012
Sang-Kon Kim1
1Department of Science, Hongik University, Seoul, 121-791, Republic of Korea

Tài liệu tham khảo

Zhang, 2008, Superlenses to overcome the diffraction limit, Nat. Mater., 7, 435, 10.1038/nmat2141 Lee, 2009, Near-field focusing and magnification through self-assembled nanoscale spherical lenses, Nature, 460, 498, 10.1038/nature08173 Luoa, 2004, Surface plasmon resonant interference nanolithography technique, Appl. Phys. Lett., 84, 4780, 10.1063/1.1760221 Ozbay, 2006, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science, 311, 189, 10.1126/science.1114849 Hemmer, 2006, Quantum lithography with classical light, Phys. Rev. Lett., 96, 163603, 10.1103/PhysRevLett.96.163603 Sun, 2007, Quantum lithography with classical light: generation of arbitrary patterns, Phys. Rev. A, 75, 065803, 10.1103/PhysRevA.75.065803 Rittweger, 2009, STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics, 22, 144, 10.1038/nphoton.2009.2 Boto, 2000, Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit, Phys. Rev. Lett., 85, 2733, 10.1103/PhysRevLett.85.2733 Paterl, 2010, Two-photon interference of the emission from electrically tunable remote quantum dots, Nat. Photonics, 4, 632, 10.1038/nphoton.2010.161 Tribu, 2008, A high-temperature single-photon source from nanowire quantum dots, Nano Lett., 8, 4326, 10.1021/nl802160z Aharonovich, 2011, Diamond-based single-photon emitters, Rep. Prog. Phys., 74, 076501, 10.1088/0034-4885/74/7/076501 Salter, 2010, An entangled-light-emitting diode, Nature, 465, 594, 10.1038/nature09078 Afek, 2010, High-NOON states by mixing quantum and classical light, Science, 328, 879, 10.1126/science.1188172 Kim, 2009, Three-photon N00N states generated by photon subtraction from double photon pairs, Opt. Express, 22, 19720, 10.1364/OE.17.019720 Mitchell, 2004, Super-resolving phase measurements with a multiphoton entangled state, Nature, 429, 161, 10.1038/nature02493 Vitelli, 2009, Amplification of polarization NOON states, J. Opt. Soc. Am. B, 26, 892, 10.1364/JOSAB.26.000892 Bentley, 2008, Nonlinear interferometric lithography for arbitrary two-dimensional patterns, J. Micro/Nanolithog. MEMS MOEMS, 7, 013004, 10.1117/1.2838591 Park, 2008, Generation of super-resolution atomic state density distribution based on temporally cascaded multiple light exposures, Opt. Express, 16, 21982, 10.1364/OE.16.021982 Li, 2008, Optical imaging beyond the diffraction limit via dark states, Phys. Rev. A, 78, 013803, 10.1103/PhysRevA.78.013803 Shibuya, 2002, Improvement of two-photon absorption lithography, SPIE, 4691, 1584, 10.1117/12.474547 Wu, 2003, Grating analysis of frequency parsing strategies for imaging interferometric lithography, SPIE, 5040, 1276, 10.1117/12.485356 Kim, 2011, Towards interferometric quantum lithography: observation of spatial quantum interference of the three-photon N00N state, SPIE, 8163, 816314, 10.1117/12.903886 Kiffner, 2008, Resonant interferometric lithography beyond the diffraction limit, Phys. Rev. Lett., 100, 073602, 10.1103/PhysRevLett.100.073602 Kim, 2008, Influence of mask feature on the diffracted light in proximity and contact lithography, J. Korean Phys. Soc., 53, 3578, 10.3938/jkps.53.3578 Wang, 2004, Rigorous electromagnetic modeling of near-field phase-shifting contact lithography, Microelectron. Eng., 71, 34, 10.1016/j.mee.2003.09.003 Kim, 2008, A mask generation approach to double patterning technology with inverse lithography, Jpn. J. Appl. Phys., 47, 8333, 10.1143/JJAP.47.8333 Kim, 2007, Process extension techniques for optical lithography: thermal treatment, polarization and double patterning, J. Korean Phys. Soc., 51, 1413, 10.3938/jkps.51.1413 Erdmann, 2008, Rigorous electromagnetic field simulation of two-beam interference exposures for the exploration of double patterning and double exposure scenarios, SPIE, 6924, 692452, 10.1117/12.772741 Kim, 2011, Exposed pattern interaction of litho-cure-litho-etch process in computational lithography, J. Korean Phys. Soc., 59, 425, 10.3938/jkps.59.425 Fujii, 2003, Theoretical consideration on quantum lithography with conventional projection, SPIE, 5040, 1502, 10.1117/12.485335 Kim, 2007, Polarized effects in optical lithography with high NA technology, J. Korean Phys. Soc., 50, 1952, 10.3938/jkps.50.1952 S.-K. Kim, Sensitivity of process parameters on pattern formation of litho-cure-litho-etch process, Jpn. J. Appl. Phys. (in press).