TiC-(Ti,M)C core-rim structures in solid-state manufactured steel-based MMCs
Tóm tắt
Từ khóa
Tài liệu tham khảo
García, 2018, Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear., 414–415, 182, 10.1016/j.wear.2018.08.010
Aparicio-Fernández, 2016, In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels, Acta Mater., 107, 38, 10.1016/j.actamat.2016.01.048
Wang, 2016, Fabrication and properties of the TiC reinforced high-strength steel matrix composite, Int. J. Refract. Met. Hard Mater., 58, 14, 10.1016/j.ijrmhm.2016.03.013
Henschel, 2018, Fracture toughness of a hot work tool steel-TiC composite produced by mechanical milling and spark plasma sintering, Mater. Sci. Eng. A, 709, 152, 10.1016/j.msea.2017.10.053
Ahn, 2000, Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83, 1489, 10.1111/j.1151-2916.2000.tb01415.x
Zackrisson, 2001, Development of cermet microstructures during sintering, Metall. Mater. Trans. A., 32, 85, 10.1007/s11661-001-0104-z
Feng, 2004, Phase evolution and microstructure characteristics of ultrafine Ti(C,N)-based cermet by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 22, 133, 10.1016/j.ijrmhm.2004.03.002
Zheng, 2005, Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering, Mater. Chem. Phys., 92, 64, 10.1016/j.matchemphys.2004.12.031
Li, 2012, Study on the formation of core-rim structure in Ti(CN)-based cermets, Int. J. Refract. Met. Hard Mater., 35, 27, 10.1016/j.ijrmhm.2012.03.012
Shi, 2017, Characterisation of Ti(C, N)-based cermets with various nitrogen contents studied by EBSD/SEM and TEM, J. Alloys Compd., 695, 2857, 10.1016/j.jallcom.2016.11.397
Hill, 2011, The impact of processing on microstructure, single-phase properties and wear resistance of MMCs, Wear, 271, 1895, 10.1016/j.wear.2010.11.031
Jin, 2016, Microstructure instability in TiC-316L stainless steel cermets, Int. J. Refract. Met. Hard Mater., 58, 74, 10.1016/j.ijrmhm.2016.03.012
Guo, 2008, Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide, Int. J. Refract. Met. Hard Mater., 26, 601, 10.1016/j.ijrmhm.2008.01.007
Park, 2016, Carbide/binder interfaces in Ti(CN)-(Ti,W)C/(Ti,W)(CN)-based cermets, J. Alloys Compd., 657, 671, 10.1016/j.jallcom.2015.10.121
Cédat, 2009, Microstructural characterization of a composite Mo reinforced by 25 at.% TiC, J. Nucl. Mater., 385, 533, 10.1016/j.jnucmat.2008.12.047
Ohser-Wiedemann, 2012, Spark plasma sintering of TiC particle-reinforced molybdenum composites, Int. J. Refract. Met. Hard Mater., 32, 1, 10.1016/j.ijrmhm.2011.12.001
Song, 2003, Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications, Int. J. Refract. Met. Hard Mater., 21, 1, 10.1016/S0263-4368(02)00105-1
Yang, 2015, Grain growth in Ti(C,N)-based cermets during liquid-phase sintering, J. Am. Ceram. Soc., 98, 1005, 10.1111/jace.13359
Xiong, 2017, Morphology evolution of TiC-based cermets via different sintering schedules, Ceram. Int., 43, 5805, 10.1016/j.ceramint.2017.01.133
Alvaredo, 2012, Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering, Mater. Sci. Eng. A, 538, 28, 10.1016/j.msea.2011.12.107
Bolton, 1997, Microstructural development and sintering kinetics in ceramic reinforced high speed steel metal matrix composites, Powder Metall., 40, 143, 10.1179/pom.1997.40.2.143
Pagounis, 1997, Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing, Powder Metall., 40, 55, 10.1179/pom.1997.40.1.55
Pagounis, 1998, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng. A, 246, 221, 10.1016/S0921-5093(97)00710-7
Fedrizzi, 2013, Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles, Mater. Charact., 86, 69, 10.1016/j.matchar.2013.09.012
Wirth, 2009, Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition , microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol., 261, 217, 10.1016/j.chemgeo.2008.05.019
Cliff, 1975, The quantitative analysis of thin specimens, J. Microsc., 103, 203, 10.1111/j.1365-2818.1975.tb03895.x
Bruker AXS, TOPAS V5, 1999
Kusztrits, 2018
Christensen, 1978, The temperature factor parameters of some transition metal carbides and nitrides by single crystal X-ray and neutron, Acta Chem. Scand., 32, 89, 10.3891/acta.chem.scand.32a-0089
Williams, 1962, Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys., 33, 10.1063/1.1777197
Norton, 1949, Solubility relationships of the refractory monocarbides, Trans. Am. Inst. Min. Metall. Eng., 185, 133
Nartowski, 1999, Solid state metathesis routes to transition metal carbides, J. Mater. Chem., 9, 1275, 10.1039/a808642g
Willens, 1967, Superconductivity of the transition-metal carbides, Pysical Rev, 159, 327, 10.1103/PhysRev.159.327
Alvaredo, 2017, Characterization of interfaces between TiCN and iron-base binders, Int. J. Refract. Met. Hard Mater., 63, 32, 10.1016/j.ijrmhm.2016.08.010
Stiller, 1987, Secondary hardening in high speed steels, J. Phys. Colloq., 44, 405
Capkova, 1987, Thermal vibrations in substoichiometric vanadium nitrides, Phys. Status Solidi B., 143, 471, 10.1002/pssb.2221430209
Afir, 1999, X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum, J. Alloys Compd., 288, 124, 10.1016/S0925-8388(99)00112-7
Lin, 2017, Enhanced interface structure and properties of titanium carbonitride-based cermets with the extra solid phase reaction, Materials (Basel), 10, 10.3390/ma10091090
Horton, 1984, Characterization of powders and dislocation structures in processing of WC–Co, (W, Ti)C–Co, and TiC–Co hardmetals, Powder Metall., 27, 201, 10.1179/pom.1984.27.4.201
Pelleg, 2016