TiC-(Ti,M)C core-rim structures in solid-state manufactured steel-based MMCs

Materials Characterization - Tập 156 - Trang 109880 - 2019
Josef Pörnbacher1, Harald Leitner2, P. Angerer1, Tomasz Wójcik3, S. Marsoner1, Gerald Ressel1
1Materials Center Leoben Forschung GmbH, 8700, Leoben, Austria
2voestalpine Böhler Edelstahl GmbH & Co KG, 8605 Kapfenberg, Austria
3Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Wien, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

García, 2018, Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear., 414–415, 182, 10.1016/j.wear.2018.08.010

Aparicio-Fernández, 2016, In-situ metal matrix composite steels: effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels, Acta Mater., 107, 38, 10.1016/j.actamat.2016.01.048

Wang, 2016, Fabrication and properties of the TiC reinforced high-strength steel matrix composite, Int. J. Refract. Met. Hard Mater., 58, 14, 10.1016/j.ijrmhm.2016.03.013

Henschel, 2018, Fracture toughness of a hot work tool steel-TiC composite produced by mechanical milling and spark plasma sintering, Mater. Sci. Eng. A, 709, 152, 10.1016/j.msea.2017.10.053

Ahn, 2000, Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83, 1489, 10.1111/j.1151-2916.2000.tb01415.x

Zackrisson, 2001, Development of cermet microstructures during sintering, Metall. Mater. Trans. A., 32, 85, 10.1007/s11661-001-0104-z

Feng, 2004, Phase evolution and microstructure characteristics of ultrafine Ti(C,N)-based cermet by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 22, 133, 10.1016/j.ijrmhm.2004.03.002

Zheng, 2005, Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering, Mater. Chem. Phys., 92, 64, 10.1016/j.matchemphys.2004.12.031

Li, 2012, Study on the formation of core-rim structure in Ti(CN)-based cermets, Int. J. Refract. Met. Hard Mater., 35, 27, 10.1016/j.ijrmhm.2012.03.012

Shi, 2017, Characterisation of Ti(C, N)-based cermets with various nitrogen contents studied by EBSD/SEM and TEM, J. Alloys Compd., 695, 2857, 10.1016/j.jallcom.2016.11.397

Hill, 2011, The impact of processing on microstructure, single-phase properties and wear resistance of MMCs, Wear, 271, 1895, 10.1016/j.wear.2010.11.031

Jin, 2016, Microstructure instability in TiC-316L stainless steel cermets, Int. J. Refract. Met. Hard Mater., 58, 74, 10.1016/j.ijrmhm.2016.03.012

Guo, 2008, Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide, Int. J. Refract. Met. Hard Mater., 26, 601, 10.1016/j.ijrmhm.2008.01.007

Park, 2016, Carbide/binder interfaces in Ti(CN)-(Ti,W)C/(Ti,W)(CN)-based cermets, J. Alloys Compd., 657, 671, 10.1016/j.jallcom.2015.10.121

Cédat, 2009, Microstructural characterization of a composite Mo reinforced by 25 at.% TiC, J. Nucl. Mater., 385, 533, 10.1016/j.jnucmat.2008.12.047

Ohser-Wiedemann, 2012, Spark plasma sintering of TiC particle-reinforced molybdenum composites, Int. J. Refract. Met. Hard Mater., 32, 1, 10.1016/j.ijrmhm.2011.12.001

Song, 2003, Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications, Int. J. Refract. Met. Hard Mater., 21, 1, 10.1016/S0263-4368(02)00105-1

Yang, 2015, Grain growth in Ti(C,N)-based cermets during liquid-phase sintering, J. Am. Ceram. Soc., 98, 1005, 10.1111/jace.13359

Xiong, 2017, Morphology evolution of TiC-based cermets via different sintering schedules, Ceram. Int., 43, 5805, 10.1016/j.ceramint.2017.01.133

Alvaredo, 2012, Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering, Mater. Sci. Eng. A, 538, 28, 10.1016/j.msea.2011.12.107

Bolton, 1997, Microstructural development and sintering kinetics in ceramic reinforced high speed steel metal matrix composites, Powder Metall., 40, 143, 10.1179/pom.1997.40.2.143

Pagounis, 1997, Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing, Powder Metall., 40, 55, 10.1179/pom.1997.40.1.55

Pagounis, 1998, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng. A, 246, 221, 10.1016/S0921-5093(97)00710-7

Fedrizzi, 2013, Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles, Mater. Charact., 86, 69, 10.1016/j.matchar.2013.09.012

Sundman, 1985, The Thermo-Calc databank system, CALPHAD, 9, 153, 10.1016/0364-5916(85)90021-5

Wirth, 2009, Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition , microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol., 261, 217, 10.1016/j.chemgeo.2008.05.019

Cliff, 1975, The quantitative analysis of thin specimens, J. Microsc., 103, 203, 10.1111/j.1365-2818.1975.tb03895.x

Bruker AXS, TOPAS V5, 1999

Kusztrits, 2018

Christensen, 1978, The temperature factor parameters of some transition metal carbides and nitrides by single crystal X-ray and neutron, Acta Chem. Scand., 32, 89, 10.3891/acta.chem.scand.32a-0089

Williams, 1962, Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys., 33, 10.1063/1.1777197

Norton, 1949, Solubility relationships of the refractory monocarbides, Trans. Am. Inst. Min. Metall. Eng., 185, 133

Nartowski, 1999, Solid state metathesis routes to transition metal carbides, J. Mater. Chem., 9, 1275, 10.1039/a808642g

Willens, 1967, Superconductivity of the transition-metal carbides, Pysical Rev, 159, 327, 10.1103/PhysRev.159.327

Alvaredo, 2017, Characterization of interfaces between TiCN and iron-base binders, Int. J. Refract. Met. Hard Mater., 63, 32, 10.1016/j.ijrmhm.2016.08.010

Stiller, 1987, Secondary hardening in high speed steels, J. Phys. Colloq., 44, 405

Capkova, 1987, Thermal vibrations in substoichiometric vanadium nitrides, Phys. Status Solidi B., 143, 471, 10.1002/pssb.2221430209

Afir, 1999, X-ray diffraction study of Ti–O–C system at high temperature and in a continuous vacuum, J. Alloys Compd., 288, 124, 10.1016/S0925-8388(99)00112-7

Lin, 2017, Enhanced interface structure and properties of titanium carbonitride-based cermets with the extra solid phase reaction, Materials (Basel), 10, 10.3390/ma10091090

Horton, 1984, Characterization of powders and dislocation structures in processing of WC–Co, (W, Ti)C–Co, and TiC–Co hardmetals, Powder Metall., 27, 201, 10.1179/pom.1984.27.4.201

Pelleg, 2016

Suryanarayana, 2001, Mechanical alloying and milling, Prog. Mater. Sci., 46, 1, 10.1016/S0079-6425(99)00010-9