Directional Bleb Formation in Spherical Cells under Temperature Gradient
Tài liệu tham khảo
Clapham, 2003, TRP channels as cellular sensors, Nature, 426, 517, 10.1038/nature02196
Sakai, 1986, Rapid cooling contracture, Jpn. J. Physiol., 36, 423, 10.2170/jjphysiol.36.423
Tseeb, 2009, Highly thermosensitive Ca dynamics in a HeLa cell through IP3 receptors, HFSP J, 3, 117, 10.2976/1.3073779
Itoh, 2014, Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts, Biophysics, 10, 109, 10.2142/biophysics.10.109
Xiao, 2011, Temperature-dependent STIM1 activation induces Ca²+ influx and modulates gene expression, Nat. Chem. Biol., 7, 351, 10.1038/nchembio.558
Huang, 2010, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nat. Nanotechnol., 5, 602, 10.1038/nnano.2010.125
Chen, 2015, Wireless magnetothermal deep brain stimulation, Science, 347, 1477, 10.1126/science.1261821
Kamei, 2009, Infrared laser-mediated gene induction in targeted single cells in vivo, Nat. Methods, 6, 79, 10.1038/nmeth.1278
Shapiro, 2012, Infrared light excites cells by changing their electrical capacitance, Nat. Commun., 3, 736, 10.1038/ncomms1742
Liu, 2014, Exciting cell membranes with a blustering heat shock, Biophys. J., 106, 1570, 10.1016/j.bpj.2014.03.008
Oyama, 2012, Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients, Biochem. Biophys. Res. Commun., 417, 607, 10.1016/j.bbrc.2011.12.015
Miyako, 2014, Photofunctional nanomodulators for bioexcitation, Angew. Chem. Int. Ed. Engl., 53, 13121, 10.1002/anie.201407169
Shintani, 2015, High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat, Biochem. Biophys. Res. Commun., 457, 165, 10.1016/j.bbrc.2014.12.077
Bonner, 1950, The orientation to light and the extremely sensitive orientation to temperature gradients in the slime mold Dictyostelium discoideum, J. Cell. Physiol., 36, 149
Maeda, 1976, Effect of temperature on motility and chemotaxis of Escherichia coli, J. Bacteriol., 127, 1039, 10.1128/jb.127.3.1039-1046.1976
Bahat, 2003, Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract, Nat. Med., 9, 149, 10.1038/nm0203-149
Eisenbach, 2006, Sperm guidance in mammals - an unpaved road to the egg, Nat. Rev. Mol. Cell Biol., 7, 276, 10.1038/nrm1893
Pomerance, 2005, Actin polymerization in a thermal gradient, Macromol. Symp., 227, 231, 10.1002/masy.200550923
Kakugo, 2009, Formation of well-oriented microtubules with preferential polarity in a confined space under a temperature gradient, J. Am. Chem. Soc., 131, 18089, 10.1021/ja901538n
Kato, 1999, Imaging of thermal activation of actomyosin motors, Proc. Natl. Acad. Sci. USA, 96, 9602, 10.1073/pnas.96.17.9602
Kawaguchi, 2001, Thermal activation of single kinesin molecules with temperature pulse microscopy, Cell Motil. Cytoskeleton, 49, 41, 10.1002/cm.1019
Iwaki, 2015, Local heat activation of single myosins based on optical trapping of gold nanoparticles, Nano Lett., 15, 2456, 10.1021/nl5049059
Duhr, 2006, Why molecules move along a temperature gradient, Proc. Natl. Acad. Sci. USA, 103, 19678, 10.1073/pnas.0603873103
Maeda, 2011, Thermal separation: interplay between the Soret effect and entropic force gradient, Phys. Rev. Lett., 107, 038301-1, 10.1103/PhysRevLett.107.038301
Oyama, 2012, Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells, Lab Chip, 12, 1591, 10.1039/c2lc00014h
Reichl, 2014, Thermophoretic manipulation of molecules inside living cells, J. Am. Chem. Soc., 136, 15955, 10.1021/ja506169b
Zeeb, 2004, A novel method of thermal activation and temperature measurement in the microscopic region around single living cells, J. Neurosci. Methods, 139, 69, 10.1016/j.jneumeth.2004.04.010
Riedl, 2008, Lifeact: a versatile marker to visualize F-actin, Nat. Methods, 5, 605, 10.1038/nmeth.1220
Lecuit, 2007, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis, Nat. Rev. Mol. Cell Biol., 8, 633, 10.1038/nrm2222
Clark, 2011, Mechanics and regulation of cell shape during the cell cycle, Results Probl. Cell Differ., 53, 31, 10.1007/978-3-642-19065-0_3
Charras, 2008, Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol., 9, 730, 10.1038/nrm2453
Paluch, 2013, The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582, 10.1016/j.ceb.2013.05.005
Kawai, 2000, Temperature change does not affect force between single actin filaments and HMM from rabbit muscles, Biophys. J., 78, 3112, 10.1016/S0006-3495(00)76848-2
Kawai, 2006, Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments, J. Physiol., 574, 877, 10.1113/jphysiol.2006.111708
Sunyer, 2009, The temperature dependence of cell mechanics measured by atomic force microscopy, Phys. Biol., 6, 025009, 10.1088/1478-3975/6/2/025009
Williamson, 1975, The influence of temperature on red cell deformability, Blood, 46, 611, 10.1182/blood.V46.4.611.611
Petersen, 1982, Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B, Proc. Natl. Acad. Sci. USA, 79, 5327, 10.1073/pnas.79.17.5327
Liu, 2007, Effect of temperature on tether extraction, surface protrusion, and cortical tension of human neutrophils, Biophys. J., 93, 2923, 10.1529/biophysj.107.105346
Rico, 2010, Temperature modulation of integrin-mediated cell adhesion, Biophys. J., 99, 1387, 10.1016/j.bpj.2010.06.037
Chan, 2014, Impact of heating on passive and active biomechanics of suspended cells, Interface Focus, 4, 20130069, 10.1098/rsfs.2013.0069
Haviv, 2008, A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent, J. Mol. Biol., 375, 325, 10.1016/j.jmb.2007.09.066
Wilson, 2010, Myosin II contributes to cell-scale actin network treadmilling through network disassembly, Nature, 465, 373, 10.1038/nature08994
Murrell, 2012, F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex, Proc. Natl. Acad. Sci. USA, 109, 20820, 10.1073/pnas.1214753109
Reymann, 2012, Actin network architecture can determine myosin motor activity, Science, 336, 1310, 10.1126/science.1221708
Jung, 2009, Control of granule mobility and exocytosis by Ca2+ -dependent formation of F-actin in pancreatic duct epithelial cells, Traffic, 10, 392, 10.1111/j.1600-0854.2009.00884.x
Matsumura, 2005, Regulation of myosin II during cytokinesis in higher eukaryotes, Trends Cell Biol., 15, 371, 10.1016/j.tcb.2005.05.004
Eggermann, 2012, Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses, Nat. Rev. Neurosci., 13, 7, 10.1038/nrn3125
Saoudi, 2004, Calcium-independent cytoskeleton disassembly induced by BAPTA, Eur. J. Biochem., 271, 3255, 10.1111/j.1432-1033.2004.04259.x
Gyger, 2014, Active contractions in single suspended epithelial cells, Eur. Biophys. J., 43, 11, 10.1007/s00249-013-0935-8
Barfod, 2011, Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling, Mol. Biol. Cell, 22, 634, 10.1091/mbc.e10-06-0514
Ren, 1999, Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton, EMBO J., 18, 578, 10.1093/emboj/18.3.578
Norman, 2011, Blebbing dynamics during endothelial cell spreading, Eur. J. Cell Biol., 90, 37, 10.1016/j.ejcb.2010.09.013
Johannsen, 2005, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia, 21, 637, 10.1080/02656730500158360
Johannsen, 2007, Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial, Int. J. Hyperthermia, 23, 315, 10.1080/02656730601175479
Johannsen, 2007, Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution, Eur. Urol., 52, 1653, 10.1016/j.eururo.2006.11.023
Maier-Hauff, 2011, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J. Neurooncol., 103, 317, 10.1007/s11060-010-0389-0
Wust, 2006, Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures, Int. J. Hyperthermia, 22, 673, 10.1080/02656730601106037
van Landeghem, 2009, Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles, Biomaterials, 30, 52, 10.1016/j.biomaterials.2008.09.044
Weintraub, 2013, Biomedicine: the new gold standard, Nature, 495, S14, 10.1038/495S14a
Peukes, 2014, Direct measurement of the cortical tension during the growth of membrane blebs, Biophys. J., 107, 1810, 10.1016/j.bpj.2014.07.076
Kiraly, 2014, Tumor cell fusion and multipolar trivision, J. Cancer Res. Ther. Oncol, 2, 1
Kapiszewska, 1986, Changes in bleb formation following hyperthermia treatment of Chinese hamster ovary cells, Radiat. Res., 105, 405, 10.2307/3576695
Sakamoto, 2005, Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light, Biochemistry, 44, 584, 10.1021/bi0483357
Andersen, 2014, Nanoscale phase behavior on flat and curved membranes, Nanotechnology, 25, 505101, 10.1088/0957-4484/25/50/505101
Johnson, 2010, Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles, Biochim. Biophys. Acta, 1798, 1427, 10.1016/j.bbamem.2010.03.009
Hazel, 1995, Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?, Annu. Rev. Physiol., 57, 19, 10.1146/annurev.ph.57.030195.000315
Jackson, 1973, Calorimetric study of protein transitions in human erythrocyte ghosts, Biochemistry, 12, 3662, 10.1021/bi00743a014
Brandts, 1977, Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition, Biochemistry, 16, 3450, 10.1021/bi00634a024
Brandts, 1978, Calorimetric studies of the structural transitions of the human erythrocyte membrane. Studies of the B and C transitions, Biochim. Biophys. Acta, 512, 566, 10.1016/0005-2736(78)90166-9