Directional Bleb Formation in Spherical Cells under Temperature Gradient

Elsevier BV - Tập 109 Số 2 - Trang 355-364 - 2015
Kotaro Kotaro, Tomomi Tomomi, Akira Akira, Taku Taku, Hideki Hideki, Yusuke Yusuke, Makito Makito, Takeshi Takeshi, Takashi Takashi, Madoka Madoka, Shin'ichi Shin'ichi

Tài liệu tham khảo

Clapham, 2003, TRP channels as cellular sensors, Nature, 426, 517, 10.1038/nature02196 Sakai, 1986, Rapid cooling contracture, Jpn. J. Physiol., 36, 423, 10.2170/jjphysiol.36.423 Tseeb, 2009, Highly thermosensitive Ca dynamics in a HeLa cell through IP3 receptors, HFSP J, 3, 117, 10.2976/1.3073779 Itoh, 2014, Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts, Biophysics, 10, 109, 10.2142/biophysics.10.109 Xiao, 2011, Temperature-dependent STIM1 activation induces Ca²+ influx and modulates gene expression, Nat. Chem. Biol., 7, 351, 10.1038/nchembio.558 Huang, 2010, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nat. Nanotechnol., 5, 602, 10.1038/nnano.2010.125 Chen, 2015, Wireless magnetothermal deep brain stimulation, Science, 347, 1477, 10.1126/science.1261821 Kamei, 2009, Infrared laser-mediated gene induction in targeted single cells in vivo, Nat. Methods, 6, 79, 10.1038/nmeth.1278 Shapiro, 2012, Infrared light excites cells by changing their electrical capacitance, Nat. Commun., 3, 736, 10.1038/ncomms1742 Liu, 2014, Exciting cell membranes with a blustering heat shock, Biophys. J., 106, 1570, 10.1016/j.bpj.2014.03.008 Oyama, 2012, Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients, Biochem. Biophys. Res. Commun., 417, 607, 10.1016/j.bbrc.2011.12.015 Miyako, 2014, Photofunctional nanomodulators for bioexcitation, Angew. Chem. Int. Ed. Engl., 53, 13121, 10.1002/anie.201407169 Shintani, 2015, High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat, Biochem. Biophys. Res. Commun., 457, 165, 10.1016/j.bbrc.2014.12.077 Bonner, 1950, The orientation to light and the extremely sensitive orientation to temperature gradients in the slime mold Dictyostelium discoideum, J. Cell. Physiol., 36, 149 Maeda, 1976, Effect of temperature on motility and chemotaxis of Escherichia coli, J. Bacteriol., 127, 1039, 10.1128/jb.127.3.1039-1046.1976 Bahat, 2003, Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract, Nat. Med., 9, 149, 10.1038/nm0203-149 Eisenbach, 2006, Sperm guidance in mammals - an unpaved road to the egg, Nat. Rev. Mol. Cell Biol., 7, 276, 10.1038/nrm1893 Pomerance, 2005, Actin polymerization in a thermal gradient, Macromol. Symp., 227, 231, 10.1002/masy.200550923 Kakugo, 2009, Formation of well-oriented microtubules with preferential polarity in a confined space under a temperature gradient, J. Am. Chem. Soc., 131, 18089, 10.1021/ja901538n Kato, 1999, Imaging of thermal activation of actomyosin motors, Proc. Natl. Acad. Sci. USA, 96, 9602, 10.1073/pnas.96.17.9602 Kawaguchi, 2001, Thermal activation of single kinesin molecules with temperature pulse microscopy, Cell Motil. Cytoskeleton, 49, 41, 10.1002/cm.1019 Iwaki, 2015, Local heat activation of single myosins based on optical trapping of gold nanoparticles, Nano Lett., 15, 2456, 10.1021/nl5049059 Duhr, 2006, Why molecules move along a temperature gradient, Proc. Natl. Acad. Sci. USA, 103, 19678, 10.1073/pnas.0603873103 Maeda, 2011, Thermal separation: interplay between the Soret effect and entropic force gradient, Phys. Rev. Lett., 107, 038301-1, 10.1103/PhysRevLett.107.038301 Oyama, 2012, Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells, Lab Chip, 12, 1591, 10.1039/c2lc00014h Reichl, 2014, Thermophoretic manipulation of molecules inside living cells, J. Am. Chem. Soc., 136, 15955, 10.1021/ja506169b Zeeb, 2004, A novel method of thermal activation and temperature measurement in the microscopic region around single living cells, J. Neurosci. Methods, 139, 69, 10.1016/j.jneumeth.2004.04.010 Riedl, 2008, Lifeact: a versatile marker to visualize F-actin, Nat. Methods, 5, 605, 10.1038/nmeth.1220 Lecuit, 2007, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis, Nat. Rev. Mol. Cell Biol., 8, 633, 10.1038/nrm2222 Clark, 2011, Mechanics and regulation of cell shape during the cell cycle, Results Probl. Cell Differ., 53, 31, 10.1007/978-3-642-19065-0_3 Charras, 2008, Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol., 9, 730, 10.1038/nrm2453 Paluch, 2013, The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582, 10.1016/j.ceb.2013.05.005 Kawai, 2000, Temperature change does not affect force between single actin filaments and HMM from rabbit muscles, Biophys. J., 78, 3112, 10.1016/S0006-3495(00)76848-2 Kawai, 2006, Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments, J. Physiol., 574, 877, 10.1113/jphysiol.2006.111708 Sunyer, 2009, The temperature dependence of cell mechanics measured by atomic force microscopy, Phys. Biol., 6, 025009, 10.1088/1478-3975/6/2/025009 Williamson, 1975, The influence of temperature on red cell deformability, Blood, 46, 611, 10.1182/blood.V46.4.611.611 Petersen, 1982, Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B, Proc. Natl. Acad. Sci. USA, 79, 5327, 10.1073/pnas.79.17.5327 Liu, 2007, Effect of temperature on tether extraction, surface protrusion, and cortical tension of human neutrophils, Biophys. J., 93, 2923, 10.1529/biophysj.107.105346 Rico, 2010, Temperature modulation of integrin-mediated cell adhesion, Biophys. J., 99, 1387, 10.1016/j.bpj.2010.06.037 Chan, 2014, Impact of heating on passive and active biomechanics of suspended cells, Interface Focus, 4, 20130069, 10.1098/rsfs.2013.0069 Haviv, 2008, A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent, J. Mol. Biol., 375, 325, 10.1016/j.jmb.2007.09.066 Wilson, 2010, Myosin II contributes to cell-scale actin network treadmilling through network disassembly, Nature, 465, 373, 10.1038/nature08994 Murrell, 2012, F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex, Proc. Natl. Acad. Sci. USA, 109, 20820, 10.1073/pnas.1214753109 Reymann, 2012, Actin network architecture can determine myosin motor activity, Science, 336, 1310, 10.1126/science.1221708 Jung, 2009, Control of granule mobility and exocytosis by Ca2+ -dependent formation of F-actin in pancreatic duct epithelial cells, Traffic, 10, 392, 10.1111/j.1600-0854.2009.00884.x Matsumura, 2005, Regulation of myosin II during cytokinesis in higher eukaryotes, Trends Cell Biol., 15, 371, 10.1016/j.tcb.2005.05.004 Eggermann, 2012, Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses, Nat. Rev. Neurosci., 13, 7, 10.1038/nrn3125 Saoudi, 2004, Calcium-independent cytoskeleton disassembly induced by BAPTA, Eur. J. Biochem., 271, 3255, 10.1111/j.1432-1033.2004.04259.x Gyger, 2014, Active contractions in single suspended epithelial cells, Eur. Biophys. J., 43, 11, 10.1007/s00249-013-0935-8 Barfod, 2011, Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling, Mol. Biol. Cell, 22, 634, 10.1091/mbc.e10-06-0514 Ren, 1999, Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton, EMBO J., 18, 578, 10.1093/emboj/18.3.578 Norman, 2011, Blebbing dynamics during endothelial cell spreading, Eur. J. Cell Biol., 90, 37, 10.1016/j.ejcb.2010.09.013 Johannsen, 2005, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia, 21, 637, 10.1080/02656730500158360 Johannsen, 2007, Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial, Int. J. Hyperthermia, 23, 315, 10.1080/02656730601175479 Johannsen, 2007, Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution, Eur. Urol., 52, 1653, 10.1016/j.eururo.2006.11.023 Maier-Hauff, 2011, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J. Neurooncol., 103, 317, 10.1007/s11060-010-0389-0 Wust, 2006, Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures, Int. J. Hyperthermia, 22, 673, 10.1080/02656730601106037 van Landeghem, 2009, Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles, Biomaterials, 30, 52, 10.1016/j.biomaterials.2008.09.044 Weintraub, 2013, Biomedicine: the new gold standard, Nature, 495, S14, 10.1038/495S14a Peukes, 2014, Direct measurement of the cortical tension during the growth of membrane blebs, Biophys. J., 107, 1810, 10.1016/j.bpj.2014.07.076 Kiraly, 2014, Tumor cell fusion and multipolar trivision, J. Cancer Res. Ther. Oncol, 2, 1 Kapiszewska, 1986, Changes in bleb formation following hyperthermia treatment of Chinese hamster ovary cells, Radiat. Res., 105, 405, 10.2307/3576695 Sakamoto, 2005, Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light, Biochemistry, 44, 584, 10.1021/bi0483357 Andersen, 2014, Nanoscale phase behavior on flat and curved membranes, Nanotechnology, 25, 505101, 10.1088/0957-4484/25/50/505101 Johnson, 2010, Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles, Biochim. Biophys. Acta, 1798, 1427, 10.1016/j.bbamem.2010.03.009 Hazel, 1995, Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?, Annu. Rev. Physiol., 57, 19, 10.1146/annurev.ph.57.030195.000315 Jackson, 1973, Calorimetric study of protein transitions in human erythrocyte ghosts, Biochemistry, 12, 3662, 10.1021/bi00743a014 Brandts, 1977, Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition, Biochemistry, 16, 3450, 10.1021/bi00634a024 Brandts, 1978, Calorimetric studies of the structural transitions of the human erythrocyte membrane. Studies of the B and C transitions, Biochim. Biophys. Acta, 512, 566, 10.1016/0005-2736(78)90166-9