Discrimination of Curcuma species from Asia using intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase

Journal of Natural Medicines - Tập 76 - Trang 69-86 - 2021
Qundong Liu1, Shu Zhu1, Shigeki Hayashi2, Osamu Iida2, Akihito Takano3, Katsunori Miyake4, Suchada Sukrong5, Mangestuti Agil6, Indira Balachandran7, Norio Nakamura8, Nobuo Kawahara2, Katsuko Komatsu1
1Institute of Natural Medicine, University of Toyama, Sugitani, Japan
2Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Kumage-Gun, Kagoshima, Japan
3Showa Pharmaceutical University, Machidashi, Japan
4Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
5Chulalongkorn University,Bangkok, Thailand
6Airlangga University, Kota SBY, Indonesia
7Center for Medicinal Plants Research, Malappuram, India
8Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe City, Japan

Tóm tắt

Recently, Curcuma rhizome-related foods with claimed health benefits have been used worldwide; however, correct identification and quality assessment have not been conducted. Due to the wide distribution and morphological similarities of Curcuma species, the classification of some species is debated and nomenclature is inconsistent among countries. In this study, to elucidate specific molecular markers of medicinally used Curcuma species in Asia, and to solve the confusion on the reported botanical origin of crude drugs, molecular analysis based on the intron length polymorphism (ILP) in genes encoding diketide-CoA synthase and curcumin synthase and the trnK intron sequences was performed using 59 plant specimens and 42 crude drug samples from 13 Curcuma species, obtained from Asian countries. The ILP patterns of the respective species from both plant specimens and crude drug samples revealed high consistency in C. aromatica, C. zedoaria, C. phaeocaulis, C. aeruginosa, C. wenyujin, and C. zanthorrhiza, but showed intraspecies polymorphism in C. longa, C. kwangsiensis, C. amada, C. mangga and C. comosa. The C. longa specimens and samples were separated into three subgroups which were highly consistent with their geographical origins. Based on the ILP markers and the trnK intron sequences, the botanical origins of “Khamin oi” from Thailand were correctly determined to be C. longa or a hybrid between C. longa and other species, and “Wan narn kum” from Thailand and “Kasturi manjal” from India were correctly determined to be C. zanthorrhiza.

Tài liệu tham khảo

The Ministry of Health, Labour and Welfare (2016) The Japanese Pharmacopoeia XVII, p 2005, 2012 Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of The People’s Republic of China. China Med Sci Press 1:146–148 Ravindran PN, Babu KN, Sivaraman K (2007) Turmeric: The genus Curcuma. CRC Press, pp 1–27, 409–436, 451–467 Komatsu K, Kita T (2015) Turmeric, medicinally-used Curcuma plants and Curcuma drugs in Asia. Foods Food Ingred J Jpn 220:298–308 Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S (2015) Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53:475–483. https://doi.org/10.1016/j.biomaterials.2015.02.116 Tapia E, Sánchez-Lozada LG, García-Niño WR, García E, Cerecedo A, García-Arroyo FE, Osorio H, Arellano A, Cristóbal-García M, Loredo ML, Molina-Jijón E, Hernández-Damián J, Negrette-Guzmán M, Zazueta C, Huerta-Yepez S, Reyes JL, Madero M, Pedraza-Chaverrí J (2014) Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic Res 48:1342–1354. https://doi.org/10.3109/10715762.2014.954109 Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, Yang D, Yang A, Yu Y (2018) Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep. https://doi.org/10.3892/or.2018.6188 Tohda C, Nakayama N, Hatanaka F, Komatsu K (2006) Comparison of anti-inflammatory activities of six Curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid-based complement. Altern Med ECAM 3:255–260. https://doi.org/10.1093/ecam/nel008 Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of Curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull (Tokyo) 56:936–940. https://doi.org/10.1248/cpb.56.936 Vinitha MR, Kumar US, Aishwarya K, Sabu M, Thomas G (2014) Prospects for discriminating Zingiberaceae species in India using DNA barcodes. J Integr Plant Biol 56:760–773. https://doi.org/10.1111/jipb.12189 Chen J, Zhao J, Erickson DL, Xia N, Kress WJ (2015) Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Mol Ecol Resour 15:337–348. https://doi.org/10.1111/1755-0998.12319 Minami M, Nishio K, Ajioka Y, Kyushima H, Shigeki K, Kinjo K, Yamada K, Nagai M, Satoh K, Sakurai Y (2009) Identification of Curcuma plants and curcumin content level by DNA polymorphisms in the trnS-trnfM intergenic spacer in chloroplast DNA. J Nat Med 63:75–79. https://doi.org/10.1007/s11418-008-0283-7 Záveská E, Fér T, Šída O, Krak K, Marhold K, Leong-Škorničková J (2012) Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: proposal of the new subgenus Ecomata. Taxon 61:747–763. https://doi.org/10.1002/tax.614004 Cao H, Sasaki Y, Fushimi H, Komatsu K (2001) Molecular analysis of medicinally-used Chinese and Japanese Curcuma based on 18S rRNA gene and trnK gene sequences. Biol Pharm Bull 24:1389–1394. https://doi.org/10.1248/bpb.24.1389 Sasaki Y, Fushimi H, Cao H, Cai S-Q, Komatsu K (2002) Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication. Biol Pharm Bull 25:1593–1599. https://doi.org/10.1248/bpb.25.1593 Kita T, Komatsu K, Zhu S, Iida O, Sugimura K, Kawahara N, Taguchi H, Masamura N, Cai S-Q (2016) Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species. Food Chem 194:1329–1336. https://doi.org/10.1016/j.foodchem.2015.08.034 Xiao X, Zhong G, Shu G, Li L, Fang Q, Chen S, Shu Z (2004) Numerical taxonomy of medicinal plants of Curcuma in China. China J Chin Mater Medica 29:15–24 Sirirugsa P, Larsen K, Maknoi C (2007) The genus Curcuma L. (Zingiberaceae): distribution and classification with reference to species diversity in Thailand. Gard Bull Singap 59:203–220 Jadhao AS, Bhuktar AS (2018) Genus Curcuma L. (Zingiberaceae) from Maharashtra State—India. Int J Curr Res Biosci Plant Biol 5:39–48 Wu Z, Raven PH, Hong D (2009) Flora of China. Science Press & Missouri Botanical Garden Press 24:359–361 Škorničková J, Sabu M (2005) The identity and distribution of Curcuma zanthorrhiza Roxb. (Zingiberaceae). Gard Bull Singap 57:199–210 Zhu S, Bai Y, Oya M, Tanaka K, Komatsu K, Maruyama T, Goda Y, Kawasaki T, Fujita M, Shibata T (2011) Genetic and chemical diversity of Eleutherococcus senticosus and molecular identification of Siberian ginseng by PCR-RFLP analysis based on chloroplast trnK intron sequence. Food Chem 129:1844–1850. https://doi.org/10.1016/j.foodchem.2011.05.128 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096 Komatsu K, Sasaki Y, Tanaka K, Kuba Y, Fushimi H, Cai S-Q (2008) Morphological, genetic, and chemical polymorphism of Curcuma kwangsiensis. J Nat Med 62:413–422. https://doi.org/10.1007/s11418-008-0272-x Leong-Škorničková J, Šída O, Marhold K (2010) Back to types! Towards stability of names in Indian Curcuma L. (Zingiberaceae ). Taxon 59:269–282. https://doi.org/10.1002/tax.591025 Salisbury RA, Hooker W, Shury DN (1805) The paradisus londinensis:or coloured figures of plants cultivated in the vicinity of the metropolis. pp. Tab. 96, Explanation of Tab 96, Text https://www.biodiversitylibrary.org/page/36898363 Leong-Škorni J (2008) Taxonomic and nomenclatural puzzles in Indian Curcuma: the identity and nomenclatural history of C. zedoaria (Christm.) Roscoe and C. zerumbet Roxb (Zingiberaceae). Taxon 57:949–962 Satake M (2012) The Japanese Pharmacopoeia and its recorded crude drugs. Annu Rep Inst Nat Med Univ Toyama 38:2–13 Kitamura C, Nagoe T, Prana MS, Agusta A, Ohashi K, Shibuya H (2007) Comparison of Curcuma sp. in Yakushima with C. aeruginosa and C. zedoaria in Java by trnK gene sequence, RAPD pattern and essential oil component. J Nat Med 61:239–243 Asiatic Society of Bengal (1810) Asiatic researches, or, Transactions of the Society instituted in Bengal for inquiring into the history and antiquities, the arts, sciences and literature of Asia. Natural History Museum Library, London, p 341 https://www.biodiversitylibrary.org/page/42220931 Koninklijke Nederlandse Botanische Verenigingnische Vereniging (1904) Recueil des travaux botaniques néerlandais. Société botanique néerlandaise, Nimègue. 14: 127–132 https://www.biodiversitylibrary.org/page/15266684 Kumar R, Singh SK, Sharma S, Mao AA (2013) New and noteworthy records of gingers from north-east India. Keanean J Sci 2:13–18 Jatoi SA, Kikuchi A, Gilani SA, Watanabe KN (2007) Phytochemical, pharmacological and ethnobotanical studies in mango ginger (Curcuma amada Roxb.; Zingiberaceae). Phytother Res 21:507–516. https://doi.org/10.1002/ptr.2137