Electric-field control of magnetic order above room temperature

Nature Materials - Tập 13 Số 4 - Trang 345-351 - 2014
R. O. Cherifi1, V. V. Ivanovskaya1, L. C. Phillips1, Alberto Zobelli2, I. C. Infante3, Eric Jacquet1, Vincent Garcia1, S. Fusil1,4, P. R. Briddon5, Nicolas Guiblin3, A. Mougin2, A. A. Ünal6, Florian Kronast6, S. València6, Brahim Dkhil3, A. Barthélémy1, M. Bibes1
1Unité Mixte de Physique CNRS/Thales, 1 av. Fresnel, 91767 Palaiseau & Université Paris-Sud, Orsay 91405, France
2Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, Orsay 91405, France
3Laboratoire SPMS, UMR 8580, Ecole Centrale Paris-CNRS, Grande voie des vignes, Châtenay-Malabry 92290, France
4Université d’Evry-Val d’Essonne, Bd. F. Mitterrand, Evry cedex 91025, France
5School of Electrical and Electronic Engineering, University of Newcastle, Newcastle upon Tyne, NE 1 7RU, UK,
6Helmholtz-Zentrum Berlin für Materialen und Energie, Albert-Einstein-Strasse 15, Berlin 12489, Germany.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

Weiler, M. et al. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).

Lahtinen, T. H. E., Franke, K. J. A. & van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012).

Ghidini, M. et al. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nature Commun. 4, 1421–1427 (2013).

Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).

Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).

Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

Zakharov, A. I., Kadomtseva, A. M., Levitin, R. Z. & Ponyatovskii, E. G. Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy. Sov. Phys. JETP 19, 1348–1353 (1964).

Stamm, C. et al. Antiferromagnetic-ferromagnetic phase transition in FeRh probed by x-ray magnetic circular dichroism. Phys. Rev. B 77, 184401 (2008).

Heeger, A. J. Pressure dependence of the FeRh first-order phase transition. J. Appl. Phys. 41, 4751–4752 (1970).

De Vries, M. A. et al. Hall-effect characterization of the metamagnetic transition in FeRh. New J. Phys. 15, 013008 (2013).

Gray, A. et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 108, 257208 (2012).

Vaz, C. A. F. Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter 24, 333201 (2012).

Naito, T., Suzuki, I., Itoh, M. & Taniyama, T. Effect of spin polarized current on magnetic phase transition of ordered FeRh wires. J. Appl. Phys. 109, 07C911 (2011).

Cher, K. M., Zhou, T. J. & Chen, J. S. Compositional effects on the structure and phase transition of epitaxial FeRh thin films. IEEE Trans. Magn. 47, 4033–4036 (2011).

Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Phil. Mag. 40, 1019–1040 (1949).

Fan, R. et al. Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers. Phys. Rev. B 82, 184418 (2010).

Maat, S., Thiele, J-U. & Fullerton, E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).

Rado, G., Ferrari, J. & Maisch, W. Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4 . Phys. Rev. B 29, 4041–4048 (1984).

Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007).

Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

Hu, J-M., Nan, C-W. & Chen, L-Q. Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain comediated magnetoelectric coupling. Phys. Rev. B 83, 134408 (2011).

Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).

Ovchinnikov, I. & Wang, K. Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys. Rev. B 79, 020402(R) (2009).

Abo, G. S. et al. Definition of magnetic exchange length. IEEE Trans. Magn. 49, 4937–4939 (2013).

Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of FeRh: A first-principles study. Phys. Rev. B 83, 174408 (2011).

Meyerheim, H. et al. Structural secrets of multiferroic interfaces. Phys. Rev. Lett. 106, 2–5 (2011).

Park, S-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

Wayne, R. Pressure dependence of the magnetic transitions in Fe–Rh alloys. Phys. Rev. 170, 523–527 (1968).

Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

Thiele, J-U., Maat, S. & Fullerton, E. E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl. Phys. Lett. 82, 2859–2861 (2003).

Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011).

Rayson, M. J. & Briddon, P. R. Rapid iterative method for electronic-structure eigenproblems using localised basis functions. Comput. Phys. Commun. 178, 128–134 (2008).