Integrating reference point, Kuhn–Tucker conditions and neural network approach for multi-objective and multi-level programming problems

OPSEARCH - Tập 54 - Trang 663-683 - 2017
R. M. Rizk-Allah1, Mahmoud A. Abo-Sinna2
1Department of Basic Engineering Science, Faculty of Engineering, EL-Menoufia University, Shebin EL-kom, Egypt
2Department of Mathematical Science, Faculty of Science, Princess Nora Bent AbdulRahman University, Al Riyadh, Saudi Arabia

Tóm tắt

In this paper, a neural network approach is constructed to solve multi-objective programming problem (MOPP) and multi-level programming problem (MLPP). The main idea is to convert the MOPP and the MLPP into an equivalent convex optimization problem. A neural network approach is then constructed for solving the obtained convex programming problem. Based on employing Lyapunov theory, the proposed neural network approach is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the MOPP and the MLPP. The simulation results also demonstrate that the proposed neural network is feasible and efficient.

Tài liệu tham khảo

Anandalingam, G., Friesz, T.L.: Hierarchical optimization: an introduction. Ann. Oper. Res. 34, 1–11 (1992) Zhang, G., Lu, J., Gao, Y.: Multi-level Decision Making: Models, Methods and Applications. Springer, Berlin (2015) Abo-Sinna, M.A., Baky, I.A.: Interactive balance space approach for solving multi-level multi-objective programming problems. Inf. Sci. 177, 3397–3410 (2007) Osman, M.S., Abo-Sinna, M.A., Amer, A.H., Emam, O.E.: A multi-level nonlinear multi-objective decision making under fuzziness. J. Appl. Math. Comput. 153, 239–252 (2004) Abo-Sinna, M.A.: A bi-level non-linear multi-objective decision making under fuzziness. J. Oper. Res. Soc. India (OPSEARCH) 38(5), 484–495 (2001) Abo-Sinna, M.A.: Pareto optimality for bi-level programming problem with fuzzy parameters. J. Oper. Res. Soc. India (OPSEARCH) 38(4), 372–393 (2001) Anandalingam, G.: A mathematical programming model of decentralized multi-level systems. J. Oper. Res. Soc. 39, 1021–1033 (1988) Ben-Ayed, O.: Bilevel linear programming. Comput. Oper. Res. 20, 485–501 (1993) Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic, Boston (1997) Wen, U.P., Hsu, S.T.: Linear bi-level programming problems—a review. J. Oper. Res. Soc. 42, 125–133 (1991) Abo-Sinna, M.A., Rizk-Allah, R.M.: Decomposition of parametric space for bi-objective optimization problem using neural network approach. Knowl. Based Syst. (under review) Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (2002) Hwang, C.L., Masud, A.S.M.: Multiple Objectives Decision Making: Methods and Applications. Springer, Berlin (1979) Xia, Y., Feng, G.: A new neural network for solving nonlinear projection equations. Neural Netw. 20, 577–589 (2007) Xue, X., Bian, W.: A project neural network for solving degenerate convex quadratic program. Neural Netw. 70, 2449–2459 (2007) Xue, X., Bian, W.: Subgradient-based neural network for nonsmooth convex optimization problems. IEEE Trans. Circuits Syst. I 55, 2378–2391 (2008) Yang ,Y., Xu X.: The projection neural network for solving convex nonlinear programming. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNAI, 4682, pp. 174–81. Springer, Berlin (2007) Yang, Y., Cao, J.: A feedback neural network for solving convex constraint optimization problems. Appl. Math. Comput. 201, 340–350 (2008) Chen, K.Z., Leung, Y., Leung, K.S., Gao, X.B.: A neural network for nonlinear programming problems. Neural Comput. Appl. 11, 103–111 (2002) Gao, X.: A novel neural network for nonlinear convex programming. IEEE Trans. Neural Netw. 15, 613–621 (2004) Tao, Q., Cao, J., Xue, M., Qiao, H.: A high performance neural network for solving nonlinear programming problems with hybrid constraints. Phys. Lett. A 288, 88–94 (2001) Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I 49, 447–458 (2002) Xia, Y., Wang, J.: A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Netw. 16, 379–386 (2005) Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans Circuits Syst 51, 447–458 (2004) Abo-Sinna, M.A., Baky, I.A.: Interactive balance space approach for solving multi-level multi-objective programming problems. Informat. Sci. 177, 3397–3410 (2007) Bard, J.F.: Practical Bilevel Optimization. Kluwer, London (1998) Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming problem. J. Oper. Res. Soc. 32, 783–792 (1981) Abo-Sinna, M.A., Amer, A.H.: Extensions of TOPSIS for multiobjective large-scale nonlinear programming problems. Appl. Math. Comput. 162(1), 243–256 (2005) Lai, Y.J.: TOPSIS for MODM. Eur. J. Oper. Res. Soc. 76, 486–500 (1994) Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969) Leung, Y., Chen, K.-Z., Jiao, Y.-C., Gao, X.-B., Leung, K.S.: A new gradient-based neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 12(5), 1047–1083 (2001) Xia, J.: The fundational theorems of Liapunov stability. Acta Math. Appl. Sin. 11(2), 249–252 (1988) LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976) Lee, E.S., Shih, H.S.: Fuzzy and Multi-Level Decision Making: An Interactive Computational Approach. Springer, London (2001) Lindo Systems, Inc.: Lingo (Extended 6.0), Premier Modeling Tool, Chicago (2000) Sun, M., Stam, R.Steuer: Interactive multiple objective programming problem using Tchebycheff programs and artificial neural networks. Comput. Oper. Res. 27(7, 8), 601–620 (2000) Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011) Lan, K.-M., Wen, U.-P., Shih, H.-S., Lee, E.S.: A hybrid neural network approach to bilevel programming problems. Appl. Math. Lett. 20, 880–884 (2007)