A note on classical Stein-type estimators in elliptically contoured models
Tài liệu tham khảo
Alam, 1969, Locally averaged risk, Annal. Inst. Statist. Math., 21, 457, 10.1007/BF02532271
Arashi, 2008, Stein-type improvement under stochastic constraints: use of multivariate Student-t model in regression, Statist. Probab. Lett., 78, 2142, 10.1016/j.spl.2008.02.003
Baranchik, 1970, A family of minimax estimators of the mean of a multivariate normal distribution, Ann. Math. Statist., 41, 642, 10.1214/aoms/1177697104
Brandwein, 1991, Generalization of James–Stein estimator under spherical symmetry, Ann. Statist., 19, 1639, 10.1214/aos/1176348267
Casella, 1990, Estimators with nondecreasing risk: application of a chi-square identity, Statist. Probab. Lett., 10, 107, 10.1016/0167-7152(90)90004-Q
Cheong, Y.-H., 1999. The distribution of quadratic forms in elliptically contoured random vectors. Ph.D. Thesis, The University of Western Ontario, London.
Chou, 1990, Minimax estimator of means of multivariate mixture, J. Multivariate Anal., 35, 141, 10.1016/0047-259X(90)90021-9
Chu, 1973, Estimation and decision for linear systems with elliptically random process, IEEE Trans. Automat. Control, 18, 499, 10.1109/TAC.1973.1100374
Debnath, 2007
Fang, 1990
Fang, 1990
Gupta, 1993
Gupta, 1995, Normal mixture representations of matrix variate elliptically contoured distributions, Sankhyā, 57, 68
James, W., Stein, C., 1961. Estimation of quadratic loss. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379.
Khan, 2005, Estimation of parameters of the simple multivariate linear model with Student-t error, J. Statist. Res., 39, 79
Khan, 1997, Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate Student-t errors, Biom. J., 39, 131, 10.1002/bimj.4710390202
Kibria, B.M.G., Saleh, A.K.Md.E., 2004. Preliminary test ridge regression estimators with student's t errors and conflicting test-statistic, Metrika 59, 105–124.
Landsamn, 2008, Stein's lemma for elliptical random vectors, J. Multivariate Anal., 99, 912, 10.1016/j.jmva.2007.05.006
Landsamn, 2003, Tail conditional expectations for elliptical distribution, North Amer. Actuarial. J., 7, 55, 10.1080/10920277.2003.10596118
Lange, 1989, Robust statistical modeling using the t-distribution, J. Amer. Statist. Assoc., 84, 881, 10.2307/2290063
Lehmann, 1998
Maruyama, Y., 2000. Minimax admissible estimation of a multivariate normal mean and improvement upon the James–Stein estimators. Dissertation, University of Tokyo, Japan.
Muirhead, 1982
Ouassou, 2002, Estimation of a parameter vector restricted to a cone, Statist. Probab. Lett., 56, 121, 10.1016/S0167-7152(01)00144-4
Saleh, 2006
Spanos, 1994, On modeling heteroscedasticity: the Student's t and elliptical linear regression models, Econ. Theo., 10, 286, 10.1017/S0266466600008422
Srivastava, 1989, Stein estimation under elliptical distribution, J. Multivariate Annal., 28, 247, 10.1016/0047-259X(89)90108-5
Stein, C., 1956. Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206.
Stein, 1981, Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9, 1135, 10.1214/aos/1176345632
Xu, 2006, Estimation of location parameters for spherically symmetric distributions, J. Multivariate Anal., 97, 514, 10.1016/j.jmva.2005.03.013