Neural network of Gaussian radial basis functions applied to the problem of identification of nuclear accidents in a PWR nuclear power plant

Annals of Nuclear Energy - Tập 77 - Trang 285-293 - 2015
Carla Regina Gomes1, Jose Antonio Carlos Canedo Medeiros2
1Universidade Federal Rural do Rio de Janeiro, DTL/IM, Nova Iguaçu, Brazil
2Universidade Federal do Rio de Janeiro, PEN/COPPE, Ilha do Fundão, Rio de Janeiro, Brazil

Tài liệu tham khảo

Alvarenga, M.A.B., 1997. Diagnóstico do desligamento de um reator nuclear através de técnicas avançadas de inteligência artificial. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, Brasil. Bartal, Y., Lin, J., Uhrig, R.E., 1994. Nuclear power plants transient diagnostics using LVQ or Some networks don’t know that they don’t know. In: Proc. IEEE International Conference on Neural Networks, USA. Bartlett, 1992, Nuclear power plant status diagnostics using an artificial neural network, Nucl. Technol., 97, 272, 10.13182/NT92-A34635 Basu, A., 1992. Nuclear power plant status diagnostics using a neural network with dynamic node architecture. Iowa State University. MS thesis. Benedek, S., Embrechts, M.J., 1996. Rapid identification of nuclear power plant malfunctions with artificial neural networks via Fourier transformed signals. In: Proc. ANNNIE’96, St. Louis, MO. Elman, 1990, Finding structure in time, Cogn. Sci., 14, 179, 10.1207/s15516709cog1402_1 Furukawa, H., Ueda, T., Kitamura, M., 1995. Use of self-organizing neural networks for rational definition of plant diagnostic symptoms. In: Proc. International Topical Meeting on Computer-Based Human Support Systems, Philadelphia. Glossário de Segurança Nuclear da CNEN, 2012. Comissão Nacional de Energia Nuclear. <http://www.cnen.gov.br/seguranca/normas/pdf/glossario.pdf>. Guo, Z., Uhrig, R.E., 1992. Using modular neural networks to monitor accident conditions in nuclear power plants. In: Proceedings of the SPIE Technical Symposium on Intelligent Information Systems, Application of Artificial Neural Networks III, Orlando, USA. Haykin, 2001 Medeiros, J.A.C.C., 2005. Enxames de partículas como ferramenta de otimização em problemas complexos da engenharia nuclear. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. Mol, A.C.A., 2002. Um sistema de identificação de transientes com inclusão de ruídos e Indicação de eventos desconhecidos, Tese de D. Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. Mol, 2003, A neural model for transient identification in dynamic processes with “do not know” response, Ann. Nucl. Energy, 30, 1365, 10.1016/S0306-4549(03)00072-0 Mol, 2006, Neural and genetic-based approaches to nuclear transient identification including “don’t know” response, Prog. Nucl. Energy, 48, 268, 10.1016/j.pnucene.2005.07.002 Moshkbar-Bakhshayesh, 2013, Transient identification in nuclear power plants: a review, Prog. Nucl. Energy, 67, 23, 10.1016/j.pnucene.2013.03.017 Na, 2004, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci., 51, 313, 10.1109/TNS.2004.825090 Park, 1991, Universal approximation using radial basis function networks, Neural Comput., 3, 246, 10.1162/neco.1991.3.2.246 Park, 1993, Approximation and radial-basis function networks, Neural Comput., 5, 305, 10.1162/neco.1993.5.2.305 Powell, 1987, Radial basis functions for multivariable interpolation: a review, 143