On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing

Cement and Concrete Research - Tập 91 - Trang 13-23 - 2017
R.J. Thomas1, Diego Lezama1, Sulapha Peethamparan1
1Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13676, USA

Tài liệu tham khảo

Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Construct. Build Mater., 43, 125, 10.1016/j.conbuildmat.2013.01.023 Duxson, 2007, The role of inorganic polymer technology in the development of green concrete, Cem. Concr. Res., 37, 1590, 10.1016/j.cemconres.2007.08.018 McLellan, 2011, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 19, 1080, 10.1016/j.jclepro.2011.02.010 Habert, 2011, An environmental evaluation of geopolymer based concrete production: reviewing current research trends, J. Clean. Prod., 19, 1229, 10.1016/j.jclepro.2011.03.012 Van Deventer, 2012, Technical and commercial progress in the adoption of geopolymer cement, Miner. Eng., 29, 89, 10.1016/j.mineng.2011.09.009 Yang, 2013, Assessment of CO2 reduction of alkali-activated concrete, J. Clean. Prod., 39, 265, 10.1016/j.jclepro.2012.08.001 Mellado, 2014, Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route, RSC Advances, 4, 23846, 10.1039/C4RA03375B Kuhl, 1908 Purdon, 1940, The action of alkalis on blast-furnace slag, J. Soc. Chem. Ind., 59, 191 Glukhovsky, 1967 Davidovits, 1985 Thomas, 2016, Alkali-activated slag cement concrete, Concr. Int., 38, 33 Byfors, 1989, Durability of concrete made with alkali-activated slag, Spec. Pub., 114, 1429 Douglas, 1992, Properties and durability of alkali-activated slag concrete, ACI Mater. J., 89, 509 Bakharev, 2001, Resistance of alkali-activated slag concrete to alkali-aggregate reaction, Cem. Concr. Res., 31, 331, 10.1016/S0008-8846(00)00483-X Bakharev, 2001, Resistance of alkali-activated slag concrete to carbonation, Cem. Concr. Res., 31, 1277, 10.1016/S0008-8846(01)00574-9 Bakharev, 2002, Sulfate attack on alkali-activated slag concrete, Cem. Concr. Res., 32, 211, 10.1016/S0008-8846(01)00659-7 Bakharev, 2003, Resistance of alkali-activated slag concrete to acid attack, Cem. Concr. Res., 33, 1607, 10.1016/S0008-8846(03)00125-X Al-Otaibi, 2008, Durability of concrete incorporating GGBS activated by water-glass, Construction and Building materials, 22, 2059, 10.1016/j.conbuildmat.2007.07.023 Adam, 2009 Chi, 2012, Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Construct. Build Mater., 35, 240, 10.1016/j.conbuildmat.2012.04.005 Bernal, 2014, Durability of alkali-activated materials: progress and perspectives, J. Am. Ceram. Soc., 97, 997, 10.1111/jace.12831 Pacheco-Torgal, 2012, Durability of alkali-activated binders: a clear advantage over portland cement or an unproven issue?, Construct. Build Mater., 30, 400, 10.1016/j.conbuildmat.2011.12.017 Provis, 2015, Advances in understanding alkali-activated materials, Cem. Concr. Res., 78, 110, 10.1016/j.cemconres.2015.04.013 Arbi, 2016, A review on the durability of alkali-activated fly ash/slag systems: advances, issues, and perspectives, Industrial & Engineering Chemistry Research, 55, 5439, 10.1021/acs.iecr.6b00559 Bažant, 2001, Prediction of concrete creep and shrinkage: past, present and future, Nucl. Eng. Des., 203, 27, 10.1016/S0029-5493(00)00299-5 Han, 1995, Theoretical prediction of drying shrinkage of concrete, J. Mater. Civ. Eng., 7, 204, 10.1061/(ASCE)0899-1561(1995)7:4(204) Bissonnette, 1999, Influence of key parameters on drying shrinkage of cementitious materials, Cem. Concr. Res., 29, 1655, 10.1016/S0008-8846(99)00156-8 Powers, 1946, Studies of the physical properties of hardened portland cement paste, Bulletin, 22 Aitcin, 1997, Integrated view of shrinkage deformation, Concr. Int., 19, 35 Jensen, 2001, Water-entrained cement-based materials I: principles and theoretical background, Cem. Concr. Res., 31, 647, 10.1016/S0008-8846(01)00463-X Röβler, 1985, Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes i. Effect of porosity, Cem. Concr. Res., 15, 320, 10.1016/0008-8846(85)90044-4 Mather, 2002, Amount of water required for complete hydration of portland cement, Concr. Int., 24, 56 Powers, 1958, Structure and physical properties of hardened portland cement paste, J. Am. Ceram. Soc., 41, 1, 10.1111/j.1151-2916.1958.tb13494.x Feldman, 1968, A model for hydrated portland cement paste as deduced from sorption-length change and mechanical properties, Matér. Constr., 1, 509, 10.1007/BF02473639 Powers, 1968, The thermodynamics of volume change and creep, Matér. Constr., 1, 487, 10.1007/BF02473638 Bažant, 1972, Nonlinear water diffusion in nonsaturated concrete, Matér. Constr., 5, 3, 10.1007/BF02479073 Bažant, 1972, Thermodynamics of hindered adsorption and its implications for hardened cement paste and concrete, Cem. Concr. Res., 2, 1, 10.1016/0008-8846(72)90019-1 Becker, 1973, A theoretical method for predicting the shrinkage of concrete, J. Am. Concr. Inst., 70, 652 Wittmann, 1973, Interaction of hardened cement paste and water, J. Am. Ceram. Soc., 56, 409, 10.1111/j.1151-2916.1973.tb12711.x Hansen, 1987, Drying shrinkage mechanisms in portland cement paste, J. Am. Ceram. Soc., 70, 323, 10.1111/j.1151-2916.1987.tb05002.x Bangham, 1937, Adsorption and the wettability of solid surfaces, Trans. Faraday Soc., 33, 1459, 10.1039/tf9373301459 Bangham, 1937, The Gibbs adsorption equation and adsorption on solids, Trans. Faraday Soc., 33, 805, 10.1039/tf9373300805 Mehta, 1993 Ferraris, 1987, Shrinkage mechanisms of hardened cement paste, Cem. Concr. Res., 17, 453, 10.1016/0008-8846(87)90009-3 Bažant, 1997, Microprestress-solidification theory for concrete creep I: aging and drying effects, J. Eng. Mech., 123, 1188, 10.1061/(ASCE)0733-9399(1997)123:11(1188) Beltzung, 2005, Role of disjoining pressure in cement based materials, Cem. Concr. Res., 35, 2364, 10.1016/j.cemconres.2005.04.004 Espinosa, 2006, Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste, Cem. Concr. Res., 36, 1969, 10.1016/j.cemconres.2006.06.010 Bažant, 1995, RILEM draft recommendation: creep and shrinkage prediction model for analysis and design of concrete structures, Mater. Struct., 28, 357, 10.1007/BF02473152 Jennings, 1994, Model for the developing microstructure in portland cement pastes, J. Am. Ceram. Soc., 77, 3161, 10.1111/j.1151-2916.1994.tb04565.x Tennis, 2000, A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes, Cem. Concr. Res., 30, 855, 10.1016/S0008-8846(00)00257-X Hurd, 1995, Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage, Nature, 374, 30 Slowik, 2008, Capillary pressure in fresh cement-based materials and identification of the air entry value, Cem. Concr. Compos., 30, 557, 10.1016/j.cemconcomp.2008.03.002 Collins, 1999, Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate, Cem. Concr. Res., 29, 607, 10.1016/S0008-8846(98)00203-8 Bakharev, 1999, Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cem. Concr. Res., 29, 1619, 10.1016/S0008-8846(99)00143-X Collins, 2000, Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage, Cem. Concr. Res., 30, 791, 10.1016/S0008-8846(00)00243-X Bakharev, 2000, Effect of admixtures on properties of alkali-activated slag concrete, Cem. Concr. Res., 30, 1367, 10.1016/S0008-8846(00)00349-5 Collins, 2000, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete, Cem. Concr. Res., 30, 1401, 10.1016/S0008-8846(00)00327-6 Palacios, 2007, Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cem. Concr. Res., 37, 691, 10.1016/j.cemconres.2006.11.021 Neto, 2008, Drying and autogenous shrinkage of pastes and mortars with activated slag cement, Cem. Concr. Res., 38, 565, 10.1016/j.cemconres.2007.11.002 Atiş, 2009, Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construct. Build Mater., 23, 548, 10.1016/j.conbuildmat.2007.10.011 Sakulich, 2013, Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing, Mater. Struct., 46, 1355, 10.1617/s11527-012-9978-z Shi, 1996, Strength, pore structure and permeability of alkali-activated slag mortars, Cem. Concr. Res., 26, 1789, 10.1016/S0008-8846(96)00174-3 Collins, 2001, Microcracking and strength development of alkali activated slag concrete, Cem. Concr. Compos., 23, 345, 10.1016/S0958-9465(01)00003-8 Chen, 2007, The hydration of slag, part 1: reaction models for alkali-activated slag, J. Mater. Sci., 42, 428, 10.1007/s10853-006-0873-2 Fernández-Jiménez, 2006, Engineering properties of alkali-activated fly ash concrete, ACI Mater. J., 103, 106 Hardjito, 2004, On the development of fly ash-based geopolymer concrete, ACI Mater. J., 101, 467 Wallah, 2006, Low-calcium fly ash-based geopolymer concrete: long-term properties Chi, 2013, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construct. Build Mater., 40, 291, 10.1016/j.conbuildmat.2012.11.003 Provis, 2012, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem. Concr. Res., 42, 855, 10.1016/j.cemconres.2012.03.004 Lloyd, 2009, Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood's metal intrusion, Microporous Mesoporous Mater., 126, 32, 10.1016/j.micromeso.2009.05.016 Leon y Leon, 1998, New perspectives in mercury porosimetry, Adv. Colloid Interf. Sci., 76, 341, 10.1016/S0001-8686(98)00052-9 Diamond, 2000, Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials, Cem. Concr. Res., 30, 1517, 10.1016/S0008-8846(00)00370-7 Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023 Fernández-Jiménez, 2003, Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel, 82, 2259, 10.1016/S0016-2361(03)00194-7 Kovalchuk, 2007, Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development-part II, Fuel, 86, 315, 10.1016/j.fuel.2006.07.010 Škvára, 2009, Material and structural characterization of alkali activated low-calcium brown coal fly ash, J. Hazard. Mater., 168, 711, 10.1016/j.jhazmat.2009.02.089 Ma, 2013, The pore structure and permeability of alkali activated fly ash, Fuel, 104, 771, 10.1016/j.fuel.2012.05.034 Van Deventer, 2006, Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization, Ind. Eng. Chem. Res., 45, 3559, 10.1021/ie051251p Collins, 2008, Unsaturated capillary flow within alkali activated slag concrete, J. Mater. Civ. Eng., 20, 565, 10.1061/(ASCE)0899-1561(2008)20:9(565) Collins, 2010, Capillary shape: influence on water transport within unsaturated alkali activated slag concrete, J. Mater. Civ. Eng., 22, 260, 10.1061/(ASCE)0899-1561(2010)22:3(260) Deir, 2014, Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems, Cem. Concr. Compos., 48, 108, 10.1016/j.cemconcomp.2013.11.010 Gebregziabiher, 2015, Very early-age reaction kinetics and microstructural development in alkali-activated slag, Cem. Concr. Compos., 55, 91, 10.1016/j.cemconcomp.2014.09.001 Gebregziabiher, 2016, Temperature and activator effects on early-age reaction kinetics of alkali-activated slag binders, Construct. Build Mater., 113, 783, 10.1016/j.conbuildmat.2016.03.098 Brough, 2002, Sodium silicate-based, alkali-activated slag mortars: part I. Strength, hydration and microstructure, Cem. Concr. Res., 32, 865, 10.1016/S0008-8846(02)00717-2 Thomas, 2015, Alkali-activated concrete: engineering properties and stress-strain behavior, Construct. Build Mater., 93, 49, 10.1016/j.conbuildmat.2015.04.039 Krizan, 2002, Effects of dosage and modulus of water glass on early hydration of alkali-slag cements, Cem. Concr. Res., 32, 1181, 10.1016/S0008-8846(01)00717-7 Pacheco-Torgal, 2008, Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products, Construct. Build Mater., 22, 1305, 10.1016/j.conbuildmat.2007.10.015 Haha, 2011, Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res., 41, 301, 10.1016/j.cemconres.2010.11.016 Altan, 2012, Alkali activation of a slag at ambient and elevated temperatures, Cem. Concr. Compos., 34, 131, 10.1016/j.cemconcomp.2011.08.003 Criado, 2005, Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products, Fuel, 84, 2048, 10.1016/j.fuel.2005.03.030 Puertas, 2006, Carbonation process of alkali-activated slag mortars, J. Mater. Sci., 41, 3071, 10.1007/s10853-005-1821-2 Shi, 2006 Thomas, 2016 Thomas, 2016, Modified test for chloride permeability of alkali-activated concrete Park, 2006, Strength and microscopic characteristics of alkali-activated fly ash-cement, Kor. J. Chem. Eng., 23, 367, 10.1007/BF02706736