3D Solar‐Blind Ga2O3 Photodetector Array Realized Via Origami Method

Advanced Functional Materials - Tập 29 Số 50 - 2019
Yancheng Chen1, Ying‐Jie Lu1, Meiyong Liao2, Yongzhi Tian1, Qian Liu1, Chaojun Gao1, Xun Yang1, Chong‐Xin Shan1
1Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 China
2Research Center for Functional Materials, National Institute for Materials Sciences, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Tóm tắt

AbstractA 3D solar‐blind photodetector array is realized from amorphous Ga2O3 films grown on polyethylene terephthalate substrates via an origami route. The photodetector cells exhibit a dark current of 0.17 nA, and the peak responsivity is about 8.9 A W−1 at 250 nm with a quantum efficiency of 4450%. The photodetector shows a distinct cut‐off wavelength at 268 nm with a solar‐blind ratio of more than two orders of magnitude (photocurrent ratio between 250 nm/300 nm). The photodetector cells reveal excellent electrical stability after thousands of bending cycles. All the photodetector cells of the 3D photodetector array have a highly consistent performance. In addition, the device can execute the functions of capturing a real‐time light trajectory and identifying multipoint light spatial distribution, which cannot be achieved in all the previously reported 2D solar‐blind photodetectors. The results suggest new pathways to fabricate 3D photodetectors from conventional semiconductor films, which may find potential applications in optical positioning, tracking, imaging and communications, etc.

Từ khóa


Tài liệu tham khảo

10.1038/s41467-018-03870-0

10.1038/nature08016

10.1038/nmat4089

10.1038/nnano.2011.38

10.1002/adma.201803980

10.1002/adfm.201404559

10.1109/LED.2006.889042

10.1126/science.1135994

10.1088/0957-4484/12/4/301

Zhang Y. H., 2017, Nat. Rev. Mater., 2, 16

10.1002/adfm.201504901

10.1021/acsnano.7b03287

10.1002/admi.201800284

10.1002/adom.201700454

10.1021/acsami.7b02213

10.1039/C8TC04258F

10.1002/adfm.201700264

10.1002/adom.201800068

10.1039/C8TC05251D

10.1002/smll.201601913

10.1002/adfm.201806006

10.1002/adom.201800359

10.1002/adma.201500268

10.1002/adma.201604049

10.1002/adfm.201900935

10.1021/acsnano.8b07997

10.1002/adfm.201706379

10.1039/C9TC02055A

10.1063/1.5006941

10.1364/PRJ.7.000381

10.1021/acsphotonics.8b00769

10.1088/1674-1056/28/1/018501

10.1088/1674-1056/28/1/017305

10.1016/j.jallcom.2019.02.031

10.1088/1361-6463/ab236f

10.1021/acsphotonics.7b00359

10.1016/j.apsusc.2019.01.177

10.1016/j.surfcoat.2009.08.051

10.1016/j.mseb.2003.10.017

10.1002/adma.201402047

10.1039/C8TC04335C

10.1039/C8TC01122B

10.1002/adfm.201802954

10.1364/OE.23.013554

10.1002/adfm.201705389

10.1021/acsami.7b09812

10.1002/adfm.201001140

10.1109/LPT.2018.2826560

10.1021/acsami.6b13771

Guo D. Y., 2017, Semicond. Sci. Technol., 32, 1

10.1039/C7TC01741C

10.1039/C7TC03746E