Study of the Viscosity of Mold Flux Based on the Vogel–Fulcher–Tammann (VFT) Model

Metallurgical and Materials Transactions B - Tập 48 - Trang 220-226 - 2016
Lejun Zhou1, Wanlin Wang1,2
1School of Metallurgy and Environment, Central South University, Changsha, P.R. China
2School of Metallurgy and Environment, National Center for International Research of Clean Metallurgy, Central South University, Changsha, P.R. China

Tóm tắt

Viscosity is one of the most important properties of mold flux and affects the process of continuous casting significantly. In order to describe the variation of viscosity of mold flux accurately in a wide range of temperature occurring in the casting mold, a non-Arrhenius Vogel–Fulcher–Tammann (VFT) model was adopted in this study. The results showed that the adjusted coefficient of determination (Adj. R 2) of non-Arrhenius VFT Model ranges from 0.92 to 0.96, which suggests this model could be well adapted to predict the relationship between viscosity and temperature of mold flux. The temperature at which viscosity becomes infinite, T VFT, increased with the addition of Cr2O3 and improvement of basicity, while it decreased with the addition of B2O3, as it was determined by both the degree of polymerization of the melt structure and crystallization behavior of the melt. Also, the pseudo-activation energy, E VFT, of Samples 1 to 5 was 60.1 ± 3.6, 94.7 ± 14.9, 101.7 ± 19.0, 38.0 ± 4.8, and 32.4 ± 4.0 kJ/mol, respectively; it increased with the addition of Cr2O3 and B2O3, but deceased with the increase of basicity.

Tài liệu tham khảo

T. Kajitani, Y. Kato, K. Harada, K. Saito, K. Harashima, and W. Yamada: ISIJ Int., 2008, vol. 48, pp.1215-1224. E. Takeuchi and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp.493-509. Y. Chung, A. W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp.957-71. B. Thomas and J. Sengupta: JOM, 2006, vol. 58, pp. 16–18. H. Harmuth and G. Xia: ISIJ Int., 2015, vol. 55, pp. 775-80. A. Kondratiev, E. Jak, and P. C. Hayes: JOM, 2002, vol. 54, pp.41-45. L. Zhou, W. Wang, and K. Zhou: ISIJ Int., 2015, vol. 55, pp. 1961-1924. G. Kim and IL Sohn: Metall. Mater. Trans. B, 2013, vol. 45, pp. 86-95. X. Qi, G. Wen, P. Tang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 6-10. Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, pp.739-46. E. Benavidez, L. Santini, M. Valentini, and E. Brandaleze: 11th International Congress on Metallurgy & Materials SAM/CONAMET 2011, 2012, vol. 1, pp. 389–96. T. Iida, H. Sakai, Y. Kita, and K. Shigeno: ISIJ Int., 2000, vol. 40, pp.S110-S114. K.C. Mills and S. Sridhar: Ironmak Steelmak., 1999, vol. 26, pp.262-268. H.S. Ray and S. Pal: Ironmak Steelmak., 2004, vol. 31, pp.125-130. D. H. Vogel: Physikalische Zeitschrift, 1921, vol. 22, pp.645-646. G. S. Fulcher: J. Am. Ceram. Soc., 1925, vol. 8, pp. 339-355. G. Tammann and W. Hesse: Z. Anorg. Allg. Chem, 1926, vol. 156, pp.245-257. D. Giordano and D. B. Dingwell: Earth Planet. Sci. Lett., 2003, vol. 208, pp.337-349. D. Giordano, J. K. Russell, and D. B. Dingwell: Earth Planet. Sci. Lett., 2008, vol. 271, pp.123-134. C. A. Angell: J. Phys. Chem. Solids, 1988, vol. 49, pp.863-871. H. Lu and W. Huang: Smart Mater. Struct. 2013, vol. 22, pp.1-8. B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, and F. Sadeghian: J. Chem. Thermodyn., 2009, vol. 41, pp.323-329. L. Zhou, W. Wang, B. Lu, and G. Wen: Met. Mater. Int., 2015, vol.21, pp.126-133. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuur, and F. Tsukihashi.: Metall. Mater. Trans. B, 2012, vol. 43, pp.354-362. H. Tweer, J. H. Simmons, and P. B. Macedo: J. Chem. Phys., 1971, vol. 54, pp.1952-1959. L. Zhou and W. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp.1548-1552. C. Xu, W. Wang, L. Zhou, S. Xie, and C. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp.882-892. V. De. Eisenhüttenleute: Slag Atlas, 2th Edition, Verlag Stahleisen GmbH, Dusseldorf ,1995, pp. 119. L. Zhou, W. Wang, J. Wei, K. Zhou: ISIJ Int., 2015, vol. 55, pp. 821-829.